Jing Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9997626/publications.pdf

Version: 2024-02-01

623574 752573 1,013 21 14 20 citations h-index g-index papers 21 21 21 1566 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Revisiting the Impact of Morphology and Oxidation State of Cu on CO ₂ Reduction Using Electrochemical Flow Cell. Journal of Physical Chemistry Letters, 2022, 13, 345-351.	2.1	13
2	Efficient and Stable Large Bandgap MAPbBr ₃ Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V. ACS Energy Letters, 2022, 7, 1112-1119.	8.8	21
3	New Insights into the Interface of Electrochemical Flow Cells for Carbon Dioxide Reduction to Ethylene. Journal of Physical Chemistry Letters, 2021, 12, 7583-7589.	2.1	21
4	Combined Precursor Engineering and Grain Anchoring Leading to MAâ€Free, Phaseâ€Pure, and Stable αâ€Formamidinium Lead Iodide Perovskites for Efficient Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 27299-27306.	7.2	46
5	MAPbI3/agarose photoactive composite for highly stable unencapsulated perovskite solar cells in humid environment. Nano Energy, 2020, 67, 104246.	8.2	36
6	Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels. Angewandte Chemie, 2019, 131, 15178-15182.	1.6	33
7	Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels. Angewandte Chemie - International Edition, 2019, 58, 15036-15040.	7.2	150
8	Solar Water Splitting with Perovskite/Silicon Tandem Cell and TiC-Supported Pt Nanocluster Electrocatalyst. Joule, 2019, 3, 2930-2941.	11.7	85
9	Selective C–C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 18704-18714.	6.6	270
10	Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. Faraday Discussions, 2019, 215, 282-296.	1.6	56
11	Bimetallic Electrocatalysts for Carbon Dioxide Reduction. Chimia, 2019, 73, 928.	0.3	7
12	Understanding the Electrochemical Reduction of Carbon Dioxide at Copper Surfaces. ACS Symposium Series, 2019, , 209-223.	0.5	1
13	Highly efficient Ag2Se quantum dots blocking layer for solid-state dye-sensitized solar cells: Size effects on device performances. Materials Today Energy, 2018, 7, 27-36.	2.5	22
14	Ag2Se quantum dots for photovoltaic applications and ligand effects on device performance. Journal of Alloys and Compounds, 2018, 766, 925-932.	2.8	13
15	Graphene oxide as stable electrocatalytic substrate for solid-state bifacial dye-sensitized solar cells. Journal of Alloys and Compounds, 2018, 764, 482-489.	2.8	1
16	Metal-organic materials as efficient additives in polymer electrolytes for quasi-solid-state dye-sensitized solar cells. Journal of Alloys and Compounds, 2017, 726, 1286-1294.	2.8	19
17	Highly efficient interfacial layer using SILAR-derived Ag2S quantum dots for solid-state bifacial dye-sensitized solar cells. Materials Today Energy, 2017, 5, 320-330.	2.5	18
18	Bifacial quasi-solid-state dye-sensitized solar cells with Poly (vinyl pyrrolidone)/polyaniline transparent counter electrode. Nano Energy, 2016, 26, 123-130.	8.2	64

#	Article	IF	CITATIONS
19	Black Phosphorus Based Photocathodes in Wideband Bifacial Dyeâ€Sensitized Solar Cells. Advanced Materials, 2016, 28, 8937-8944.	11.1	116
20	The influence of Co3O4 concentration on quasi-solid state dye-sensitized solar cells with polymer electrolyte. Solid State Ionics, 2015, 279, 1-5.	1.3	10
21	Combined precursor engineering and grain anchoring leading to MAâ€free, phaseâ€pure and stable αâ€formamidinium lead iodide perovskites for efficient solar cells. Angewandte Chemie, 0, , .	1.6	11