Zheng Chunman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9997080/publications.pdf

Version: 2024-02-01

687363 642732 26 662 13 23 citations h-index g-index papers 26 26 26 1108 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rational Construction of Fe ₂ N@C Yolkâ€"Shell Nanoboxes as Multifunctional Hosts for Ultralong Lithiumâ€"Sulfur Batteries. ACS Nano, 2019, 13, 12137-12147.	14.6	150
2	A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 11395-11402.	10.3	84
3	Flame Retardant and Stable Li _{1.5} 6<\sub>1.56(PO<\sub>4)<\sub>3-Supported Ionic Liquid Gel Polymer Electrolytes for High Safety Rechargeable Solid-State Lithium Metal Batteries. Journal of Physical Chemistry C. 2018. 122, 10334-10342.	3.1	69
4	Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Research, 2020, 13, 2143-2148.	10.4	54
5	A facile one-step hydrothermal synthesis of α-Fe ₂ O ₃ nanoplates imbedded in graphene networks with high-rate lithium storage and long cycle life. Journal of Materials Chemistry A, 2014, 2, 13942-13948.	10.3	39
6	Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells. Nano Research, 2021, 14, 1355-1363.	10.4	38
7	Hierarchical waxberry-like LiNi _{0.5} Mn _{1.5} O ₄ as an advanced cathode material for lithium-ion batteries with a superior rate capability and long-term cyclability. Journal of Materials Chemistry A, 2018, 6, 14155-14161.	10.3	35
8	Graphene oxide wrapped hierarchical porous carbon–sulfur composite cathode with enhanced cycling and rate performance for lithium sulfur batteries. RSC Advances, 2015, 5, 5516-5522.	3.6	29
9	Safer lithium metal battery based on advanced ionic liquid gel polymer nonflammable electrolytes. RSC Advances, 2016, 6, 101638-101644.	3.6	25
10	Identification of solid electrolyte interphase formed on graphite electrode cycled in trifluoroethyl aliphatic carboxylate-based electrolytes for low-temperature lithium-ion batteries. Ionics, 2016, 22, 2095-2102.	2.4	20
11	Li ₂ S–Li ₃ PS ₄ (LPS) Composite Synthesized by Liquidâ€Phase Shaking for Allâ€Solidâ€State Lithium–Sulfur Batteries with High Performance. Energy Technology, 2020, 8, 2000023.	3.8	16
12	In situ generated Li2S-LPS composite for all-solid-state lithium-sulfur battery. Ionics, 2020, 26, 2335-2342.	2.4	14
13	MOF-derived porous carbon inlaid with MnO ₂ nanoparticles as stable aqueous Zn-ion battery cathodes. Dalton Transactions, 2021, 50, 17723-17733.	3.3	14
14	LiPON as a protective layer on graphite anode to extend the storage life of Li-ion battery at elevated temperature. Ionics, 2018, 24, 723-734.	2.4	13
15	Impacts of the Properties of Anode Solid Electrolyte Interface on the Storage Life of Li-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 9411-9416.	3.1	10
16	Facile synthesis of a mixed-conductive Li2S composites for all-solid-state lithium-sulfur batteries. lonics, 2020, 26, 4257-4265.	2.4	10
17	Encapsulating sulfur into highly graphitized hollow carbon spheres as high performance cathode for lithium–sulfur batteries. RSC Advances, 2016, 6, 98035-98041.	3.6	9
18	Carbonateâ€Grafted Polysilane as a New Additive for Elevatedâ€Temperature Lithiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 2012-2018.	3.4	8

#	Article	IF	CITATIONS
19	Impacts of lithium tetrafluoroborate and lithium difluoro(oxalate)borate as additives on the storage life of Li-ion battery at elevated temperature. Ionics, 2018, 24, 1617-1628.	2.4	8
20	Ethylene Carbonate Grafted Polysilane with Different Substitutions: A New Series of Electrolyte Additives to Improve High-Temperature Performance of Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 733-742.	5.1	7
21	Design of ionic liquid-based hybrid electrolytes with additive for lithium insertion in graphite effectively and their effects on interfacial properties. Ionics, 2018, 24, 2601-2609.	2.4	4
22	In-situ generate spinel phase on a glucose-derived carbon-coated lithium-rich layered oxide cathode materials and its improved electrochemical performance. Ionics, 2020, 26, 2177-2186.	2.4	3
23	Effect of conductor materials in lithium composite anode on plating and stripping of lithium. Ionics, 2020, 26, 3307-3314.	2.4	3
24	High Rate Performance of Nano-Structured LiFePO4/C Cathode Material Prepared by a Polymer-Assisted Method from Inexpensive Iron(III) Raw Material. Russian Journal of Electrochemistry, 2020, 56, 690-697.	0.9	0
25	Study on lithium storage in silicon species of Si-O-C materials. lonics, 2020, 26, 3853-3862.	2.4	0
26	Control of electronic conductivity and ionic conductivity of mixed electron–ion conductor and their effects on lithium plating. Ionics, 2021, 27, 5167-5177.	2.4	0