Kyojin Ku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9993647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Advanced Materials, 2018, 30, e1704682.	21.0	366
2	Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nature Materials, 2020, 19, 419-427.	27.5	328
3	Review—Lithium-Excess Layered Cathodes for Lithium Rechargeable Batteries. Journal of the Electrochemical Society, 2015, 162, A2447-A2467.	2.9	141
4	Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chemistry, 2017, 19, 2980-2985.	9.0	139
5	Exploiting Lithium–Ether Coâ€Intercalation in Graphite for Highâ€Power Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700418.	19.5	122
6	Suppression of Voltage Decay through Manganese Deactivation and Nickel Redox Buffering in Highâ€Energy Layered Lithiumâ€Rich Electrodes. Advanced Energy Materials, 2018, 8, 1800606.	19.5	97
7	Utilizing Latent Multiâ€Redox Activity of pâ€Type Organic Cathode Materials toward High Energy Density Lithiumâ€Organic Batteries. Advanced Energy Materials, 2020, 10, 2001635.	19.5	47
8	A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy and Environmental Science, 2020, 13, 1269-1278.	30.8	39
9	Tin Sulfideâ€Based Nanohybrid for Highâ€Performance Anode of Sodiumâ€Ion Batteries. Small, 2017, 13, 1700767.	10.0	30
10	New Iron-Based Intercalation Host for Lithium-Ion Batteries. Chemistry of Materials, 2018, 30, 1956-1964.	6.7	20
11	NaF–FeF2 nanocomposite: New type of Na-ion battery cathode material. Nano Research, 2017, 10, 4388-4397.	10.4	17
12	Process Engineering to Increase the Layered Phase Concentration in the Immediate Products of Flame Spray Pyrolysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 26915-26923.	8.0	11
13	Understanding the constant-voltage fast-charging process using a high-rate Ni-rich cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2021, 10, 288-295.	10.3	10
14	Trackable galvanostatic history in phase separation based electrodes for lithium-ion batteries: a mosaic sub-grouping intercalation model. Energy and Environmental Science, 2017, 10, 2352-2364.	30.8	5