Liwei Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9991557/publications.pdf Version: 2024-02-01

LINDELLIN

#	Article	IF	CITATIONS
1	Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chemical Engineering Journal, 2021, 406, 126898.	12.7	304
2	Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chemical Engineering Journal, 2019, 362, 89-98.	12.7	278
3	A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Composites Part B: Engineering, 2020, 181, 107580.	12.0	182
4	Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chemical Engineering Journal, 2019, 373, 298-306.	12.7	176
5	Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chemical Engineering Journal, 2020, 385, 123391.	12.7	149
6	Mechanically Durable, Highly Conductive, and Anticorrosive Composite Fabrics with Excellent Self-Cleaning Performance for High-Efficiency Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2019, 11, 10883-10894.	8.0	121
7	Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring. Chemical Engineering Journal, 2021, 419, 129513.	12.7	87
8	3D Printing and Digital Processing Techniques in Dentistry: A Review of Literature. Advanced Engineering Materials, 2019, 21, 1801013.	3.5	81
9	Fluorine-free Superhydrophobic and Conductive Rubber Composite with Outstanding Deicing Performance for Highly Sensitive and Stretchable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 17774-17783.	8.0	78
10	Nanostructured Transition Metal Nitrides as Emerging Electrocatalysts for Water Electrolysis: Status and Challenges. EnergyChem, 2022, 4, 100072.	19.1	55
11	Wearable and antibacterial HPMC-anchored conductive polymer composite strain sensor with high gauge factors under small strains. Chemical Engineering Journal, 2022, 435, 135068.	12.7	31
12	Study of a water-soluble supramolecular complex of curcumin and β-cyclodextrin polymer with electrochemical property and potential anti-cancer activity. Chinese Chemical Letters, 2022, 33, 4043-4047.	9.0	31
13	CuFeN/CNT composite derived from kinetically modulated urchin-shaped MOF for highly efficient OER catalysis. Electrochimica Acta, 2021, 389, 138637.	5.2	18
14	3D Nanoconductive Network Based on the Microstructure of Latex Foam for Superior Performance Piezoresistive Sensors. ACS Applied Polymer Materials, 2022, 4, 54-63.	4.4	14
15	An In Situ Selfâ€Assembly Dual Conductive Shell Nanofiber Strain Sensor with Superior Sensitivity and Antibacterial Property. Advanced Materials Interfaces, 2022, 9, .	3.7	10
16	Preparation and Characterization of Biomimetic Hydroxyapatite Nanocrystals by Using Partially Hydrolyzed Keratin as Template Agent. Nanomaterials, 2019, 9, 241.	4.1	9
17	Preparation of polyaniline/porous carbon spheres derived from γ-cyclodextrin for supercapacitors. Journal of Electroanalytical Chemistry, 2022, 920, 116615.	3.8	8
18	Preparation of cyclodextrin polymer-functionalized polyaniline/porous carbon composites for use in high-performance supercapacitors. Materials Letters, 2022, 324, 132771.	2.6	6

#	Article	IF	CITATIONS
19	Carbon Nanofibers Based on Potassium Citrate/Polyacrylonitrile for Supercapacitors. Membranes, 2022, 12, 272.	3.0	4