
Mohamed Iqbal Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/999082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. International Journal of Molecular Sciences, 2017, 18, 1586.	4.1	301
2	The Karyopherin proteins, Crm1 and Karyopherin β1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. International Journal of Cancer, 2009, 124, 1829-1840.	5.1	236
3	A Growth-Related Oncogene/CXC Chemokine Receptor 2 Autocrine Loop Contributes to Cellular Proliferation in Esophageal Cancer. Cancer Research, 2006, 66, 3071-3077.	0.9	156
4	The receptor tyrosine kinase Axl in cancer: Biological functions and therapeutic implications. International Journal of Cancer, 2014, 134, 1024-1033.	5.1	128
5	The Role of Tumor Microenvironment in Chemoresistance: 3D Extracellular Matrices as Accomplices. International Journal of Molecular Sciences, 2018, 19, 2861.	4.1	114
6	Lysyl oxidase-like 2 expression is increased in colon and esophageal tumors and associated with less differentiated colon tumors. Genes Chromosomes and Cancer, 2007, 46, 644-655.	2.8	110
7	The Tâ€box transcription factor Tbx2: Its role in development and possible implication in cancer. IUBMB Life, 2010, 62, 92-102.	3.4	79
8	Garlicâ€derived anticancer agents: Structure and biological activity of ajoene. BioFactors, 2010, 36, 78-85.	5.4	61
9	CYP3A5 genotypes and risk of oesophageal cancer in two South African populations. Cancer Letters, 2005, 225, 275-282.	7.2	60
10	The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of oesophageal cancer. BMC Genetics, 2010, 11, 47.	2.7	60
11	Molecular landscape of esophageal cancer: implications for early detection and personalized therapy. Annals of the New York Academy of Sciences, 2018, 1434, 342-359.	3.8	56
12	Gene–environment interaction: the role of SULT1A1 and CYP3A5 polymorphisms as risk modifiers for squamous cell carcinoma of the oesophagus. Carcinogenesis, 2006, 27, 791-797.	2.8	53
13	Structure–activity studies on the anti-proliferation activity of ajoene analogues in WHCO1 oesophageal cancer cells. European Journal of Medicinal Chemistry, 2012, 50, 236-254.	5.5	53
14	Oesophageal Cancer in Africa. IUBMB Life, 2002, 53, 263-268.	3.4	51
15	Population-specific genetic associations with oesophageal squamous cell carcinoma in South Africa. Carcinogenesis, 2011, 32, 1855-1861.	2.8	47
16	Cancer Stem Cell Hypothesis for Therapeutic Innovation in Clinical Oncology? Taking the Root Out, Not Chopping the Leaf. OMICS A Journal of Integrative Biology, 2016, 20, 681-691.	2.0	47
17	The Cumulative Effects of Polymorphisms in the DNA Mismatch Repair Genes and Tobacco Smoking in Oesophageal Cancer Risk. PLoS ONE, 2012, 7, e36962.	2.5	47
18	A Key Role for Early Growth Response-1 and Nuclear Factor-ήB in Mediating and Maintaining GRO/CXCR2 Proliferative Signaling in Esophageal Cancer. Molecular Cancer Research, 2009, 7, 755-764.	3.4	44

#	Article	IF	CITATIONS
19	Distinct genetic association at the PLCE1 locus with oesophageal squamous cell carcinoma in the South African population. Carcinogenesis, 2012, 33, 2155-2161.	2.8	44
20	Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro. International Journal of Molecular Sciences, 2016, 17, 1259.	4.1	44
21	Screening of variants for lactase persistence/non-persistence in populations from South Africa and Ghana. BMC Genetics, 2009, 10, 31.	2.7	41
22	Not Everyone Fits the Mold: Intratumor and Intertumor Heterogeneity and Innovative Cancer Drug Design and Development. OMICS A Journal of Integrative Biology, 2018, 22, 17-34.	2.0	40
23	The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer, 2019, 19, 248.	2.6	40
24	MicroRNA Polymorphisms and Environmental Smoke Exposure as Risk Factors for Oesophageal Squamous Cell Carcinoma. PLoS ONE, 2013, 8, e78520.	2.5	40
25	Photolonâ,,¢, a chlorin e6 derivative, triggers ROS production and light-dependent cell death via necrosis. International Journal of Biochemistry and Cell Biology, 2008, 40, 227-235.	2.8	39
26	The cytotoxicity of garlic-related disulphides and thiosulfonates in WHCO1 oesophageal cancer cells is dependent on S-thiolation and not production of ROS. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1439-1449.	2.4	39
27	Association of cytochrome P450 2E1 genetic polymorphisms with squamous cell carcinoma of the oesophagus. Clinical Chemistry and Laboratory Medicine, 2005, 43, 370-5.	2.3	36
28	UV-mediated Regulation of the Anti-senescence Factor Tbx2. Journal of Biological Chemistry, 2008, 283, 2223-2230.	3.4	36
29	Patient and tumour characteristics as prognostic markers for oesophageal cancer: a retrospective analysis of a cohort of patients at Groote Schuur Hospital. European Journal of Cardio-thoracic Surgery, 2016, 49, 629-634.	1.4	36
30	Genetic polymorphisms of alcohol metabolising enzymes: their role in susceptibility to oesophageal cancer. Clinical Chemistry and Laboratory Medicine, 2008, 46, 323-8.	2.3	35
31	Association of a Deletion of GSTT2B with an Altered Risk of Oesophageal Squamous Cell Carcinoma in a South African Population: A Case-Control Study. PLoS ONE, 2011, 6, e29366.	2.5	35
32	Esophageal cancer risk in relation to GGC and CAG trinucleotide repeat lengths in the androgen receptor gene. International Journal of Cancer, 2003, 107, 38-45.	5.1	34
33	Increased Elastin mRNA Levels Associated with Surgically Induced Intimal Injury. Connective Tissue Research, 1988, 18, 65-78.	2.3	32
34	The garlic compound ajoene targets protein folding in the endoplasmic reticulum of cancer cells. Molecular Carcinogenesis, 2016, 55, 1213-1228.	2.7	32
35	Targeting neddylation in cancer therapy. Future Oncology, 2012, 8, 1461-1470.	2.4	30
36	Inactivation of CSK3β and activation of NF-κB pathway via Axl represents an important mediator of tumorigenesis in esophageal squamous cell carcinoma. Molecular Biology of the Cell, 2015, 26, 821-831.	2.1	30

Mohamed Iqbal Parker

#	Article	IF	CITATIONS
37	The African Esophageal Cancer Consortium: A Call to Action. Journal of Global Oncology, 2018, 4, 1-9.	0.5	29
38	Anti-Proliferative Activity of Synthetic Ajoene Analogues on Cancer Cell-Lines. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 260-266.	1.7	28
39	Genome-Wide DNA Methylation Profiling of Esophageal Squamous Cell Carcinoma from Global High-Incidence Regions Identifies Crucial Genes and Potential Cancer Markers. Cancer Research, 2021, 81, 2612-2624.	0.9	27
40	Wharton's Jelly-Derived Mesenchymal Stromal Cells and Fibroblast-Derived Extracellular Matrix Synergistically Activate Apoptosis in a p21-Dependent Mechanism in WHCO1 and MDA MB 231 Cancer CellsIn Vitro. Stem Cells International, 2016, 2016, 1-17.	2.5	26
41	Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. OMICS A Journal of Integrative Biology, 2018, 22, 733-748.	2.0	26
42	EpiPanGI Dx: A Cell-free DNA Methylation Fingerprint for the Early Detection of Gastrointestinal Cancers. Clinical Cancer Research, 2021, 27, 6135-6144.	7.0	26
43	Association of DCC, MLH1, GSTT1, GSTM1, and TP53 gene polymorphisms with colorectal cancer in Kazakhstan. Tumor Biology, 2015, 36, 279-289.	1.8	25
44	The role of inflammation in HPV infection of the Oesophagus. BMC Cancer, 2013, 13, 185.	2.6	24
45	Gene–environment interactions in esophageal cancer. Critical Reviews in Clinical Laboratory Sciences, 2015, 52, 211-231.	6.1	23
46	Transcriptional repression of the α1(I) collagen gene byras is mediated in part by an intronic AP1 site. Journal of Cellular Biochemistry, 1995, 58, 380-392.	2.6	22
47	Aberrant methylation of the MSH3 promoter and distal enhancer in esophageal cancer patients exposed to first-hand tobacco smoke. Journal of Cancer Research and Clinical Oncology, 2014, 140, 1825-1833.	2.5	22
48	The Cytotoxicity of the Ajoene Analogue BisPMB in WHCO1 Oesophageal Cancer Cells Is Mediated by CHOP/GADD153. Molecules, 2017, 22, 892.	3.8	22
49	Wnt/β-Catenin and MEK-ERK Signaling are Required for Fibroblast-Derived Extracellular Matrix-Mediated Endoderm Differentiation of Embryonic Stem Cells. Stem Cell Reviews and Reports, 2015, 11, 761-773.	5.6	21
50	NAT1 and NAT2 genetic polymorphisms and environmental exposure as risk factors for oesophageal squamous cell carcinoma: a case-control study. BMC Cancer, 2015, 15, 150.	2.6	20
51	Maternal administration of cyclophosphamide induces chromosomal aberrations and inhibits cell number, histone synthesis, and DNA synthesis in preimplantation mouse embryos. Teratogenesis, Carcinogenesis, and Mutagenesis, 1986, 6, 115-127.	0.8	19
52	Absence of feedback regulation in the synthesis of COL1A1. Life Sciences, 2014, 103, 25-33.	4.3	18
53	Evaluation of DNA damage in a population of bats (Chiroptera) residing in an abandoned monazite mine. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2004, 557, 183-190.	1.7	17
54	Feedback regulation of the α2(1) collagen gene via the Mek–Erk signaling pathway. IUBMB Life, 2012, 64, 87-98.	3.4	17

#	Article	IF	CITATIONS
55	A role for Tbx2 in the regulation of the α2(1) collagen gene in human fibroblasts. Journal of Cellular Biochemistry, 2007, 102, 618-625.	2.6	16
56	African Lettuce (<i>Launaea taraxacifolia</i>) Displays Possible Anticancer Effects and Herb–Drug Interaction Potential by CYP1A2, CYP2C9, and CYP2C19 Inhibition. OMICS A Journal of Integrative Biology, 2016, 20, 528-537.	2.0	16
57	Regulation of the human α2(1) procollagen gene by sequences adjacent to the CCAAT box. Biochemical Journal, 1997, 322, 199-206.	3.7	15
58	Chemoresistance to Cancer Treatment: Benzo-α-Pyrene as Friend or Foe?. Molecules, 2018, 23, 930.	3.8	14
59	Circulation patterns and seed-soil compatibility factors cooperate to cause cancer organ-specific metastasis. Experimental Cell Research, 2019, 375, 62-72.	2.6	14
60	Elevation of large-T antigen production by sodium butyrate treatment of SV40-transformed WI-38 fibroblasts. Journal of Cellular Biochemistry, 1992, 49, 74-81.	2.6	13
61	In vitro Cytotoxicity of Half-Sandwich Platinum Group Metal Complexes of a Cationic Alkylated Phosphaadamantane Ligand. European Journal of Inorganic Chemistry, 2016, 2016, 1267-1273.	2.0	13
62	Association of genetic variants in CHEK2 with oesophageal squamous cell carcinoma in the South African Black population. Carcinogenesis, 2019, 40, 513-520.	2.8	13
63	Nuclear transport proteins are secreted by cancer cells and identified as potential novel cancer biomarkers. International Journal of Cancer, 2022, 150, 347-361.	5.1	12
64	Health research in Africa: getting priorities right. Tropical Medicine and International Health, 2012, 17, 1048-1052.	2.3	11
65	Peripheral Blood Mitochondrial DNA/Nuclear DNA (mtDNA/nDNA) Ratio as a Marker of Mitochondrial Toxicities of Stavudine Containing Antiretroviral Therapy in HIV-Infected Malawian Patients. OMICS A Journal of Integrative Biology, 2014, 18, 438-445.	2.0	11
66	Circadian Oscillations Persist in Cervical and Esophageal Cancer Cells Displaying Decreased Expression of Tumor-Suppressing Circadian Clock Genes. Molecular Cancer Research, 2020, 18, 1340-1353.	3.4	11
67	Infrequent Somatic Deletion of the 5' Region of the COL1A2 Gene in Oesophageal Squamous Cell Cancer Patients. Clinical Chemistry and Laboratory Medicine, 2002, 40, 941-5.	2.3	10
68	Synthesis and anticancer evaluation of mono- and trinuclear half-sandwich rhodium(III) and iridium(III) complexes based on N,O -salicylaldiminato-sulfonated scaffolds. Journal of Organometallic Chemistry, 2017, 846, 100-104.	1.8	10
69	Tripodal Half-Sandwich Rhodium and Iridium Complexes Containing Sulfonate and Pyridinyl Entities as Antitumor Agents. European Journal of Inorganic Chemistry, 2017, 2017, 5379-5386.	2.0	10
70	Effect of Rooperol on Collagen Synthesis and Cell Growth. IUBMB Life, 1999, 48, 321-325.	3.4	8
71	Functional characterization of cis-acting elements involved in basal transcription of the human Tbx2 gene: A new insight into the role of Sp1 in transcriptional regulation. Gene, 2008, 423, 8-13.	2.2	7
72	Delineation of the HPV11E6 and HPV18E6 Pathways in Initiating Cellular Transformation. Frontiers in Oncology, 2017, 7, 258.	2.8	7

#	Article	IF	CITATIONS
73	CA repeat polymorphism in the promoter region of the COL1A2 gene. Journal of Human Genetics, 1999, 44, 419-420.	2.3	5
74	Tumour cells down-regulate CCN2 gene expression in co-cultured fibroblasts in a Smad7- and ERK-dependent manner. Cell Communication and Signaling, 2013, 11, 75.	6.5	4
75	Characterization of two distinct families of transcription factors that bind to the CCAAT box region of the human COL1A2 gene. Journal of Cellular Biochemistry, 1998, 70, 455-467.	2.6	3
76	Differential effects of novel tumour-derived p53 mutations on the transformation of NIH-3T3 cells. Biological Chemistry, 2008, 389, 57-67.	2.5	3
77	A Novel Role of Annexin A2 in Human Type I Collagen Gene Expression. Journal of Cellular Biochemistry, 2015, 116, 408-417.	2.6	3
78	The Relationship Between Environmental Exposure and Genetic Architecture of the 2q33 Locus With Esophageal Cancer in South Africa. Frontiers in Genetics, 2019, 10, 406.	2.3	3
79	Genotyping of Alcohol Dehydrogenase Type 2 and 3 Using a Two-Buffer Polyacrylamide Gel Electrophoresis System. Clinical Chemistry and Laboratory Medicine, 2003, 41, 298-301.	2.3	2
80	Species-Specific Regulation of the $\hat{I}\pm$ -2(I) Procollagen Gene by Proximal Promoter Elements. IUBMB Life, 2005, 57, 363-370.	3.4	2
81	Protected regions in the chicken α2(1) procollagen promoter in differentiated tissues. Journal of Cellular Biochemistry, 1994, 54, 154-160.	2.6	1
82	Phosphorylation of the α 2(1) procollagen promoter binding proteins is required for promoter activity. IUBMB Life, 2006, 58, 97-102.	3.4	1
83	Processing and Analysis of Tissue Samples from Esophageal Cancer Patients in an African Setting. Biopreservation and Biobanking, 2022, 20, 185-194.	1.0	1
84	New insights from Whole Genome Sequencing: BCLAF1 deletion as a structural variant that predisposes cells towards cellular transformation. Oncology Reports, 2021, 46, .	2.6	1
85	Addressing Diseases in Africa. Clinical Chemistry and Laboratory Medicine, 2002, 40, 859-60.	2.3	0