Maja Planinic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/999016/publications.pdf

Version: 2024-02-01

687363 677142 24 691 13 22 h-index citations g-index papers 25 25 25 463 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	COMPARISON OF STUDENT UNDERSTANDING OF LINE GRAPH SLOPE IN PHYSICS AND MATHEMATICS. International Journal of Science and Mathematics Education, 2012, 10, 1393-1414.	2.5	92
2	EYE MOVEMENTS REVEAL STUDENTS' STRATEGIES IN SIMPLE EQUATION SOLVING. International Journal of Science and Mathematics Education, 2014, 12, 555-577.	2.5	79
3	Comparison of university students' understanding of graphs in different contexts. Physical Review Physics Education Research, 2013, 9, .	1.7	72
4	Rasch model based analysis of the Force Concept Inventory. Physical Review Physics Education Research, 2010, 6, .	1.7	67
5	Rasch analysis in physics education research: Why measurement matters. Physical Review Physics Education Research, 2019, 15, .	2.9	55
6	Student reasoning about graphs in different contexts. Physical Review Physics Education Research, 2016, 12, .	2.9	48
7	Student understanding of graph slope and area under a graph: A comparison of physics and nonphysics students. Physical Review Physics Education Research, 2018, 14, .	2.9	43
8	Exploring alternative conceptions from Newtonian dynamics and simple DC circuits: Links between item difficulty and item confidence. Journal of Research in Science Teaching, 2006, 43, 150-171.	3.3	37
9	Graphical representations of data improve student understanding of measurement and uncertainty: An eye-tracking study. Physical Review Physics Education Research, 2017, 13, .	2.9	30
10	Analyzing high school students' reasoning about electromagnetic induction. Physical Review Physics Education Research, 2017, 13, .	2.9	22
11	Role of diagrams in problem solving: An evaluation of eye-tracking parameters as a measure of visual attention. Physical Review Physics Education Research, 2019, 15, .	2.9	21
12	High-Resolution EEG Analysis of Power Spectral Density Maps and Coherence Networks in a Proportional Reasoning Task. Brain Topography, 2013, 26, 303-314.	1.8	15
13	Development of abstract mathematical reasoning: the case of algebra. Frontiers in Human Neuroscience, 2014, 8, 679.	2.0	14
14	Student recognition of interference and diffraction patterns: An eye-tracking study. Physical Review Physics Education Research, 2020, 16, .	2.9	13
15	Using the Rasch model to analyze the test of understanding of vectors. Physical Review Physics Education Research, 2018, 14, .	2.9	12
16	Effect of students' investigative experiments on students' recognition of interference and diffraction patterns: An eye-tracking study. Physical Review Physics Education Research, 2021, 17, .	2.9	10
17	Analyzing high school students' reasoning about polarization of light. Physical Review Physics Education Research, 2021, 17, .	2.9	7
18	Development and validation of the Conceptual Survey on Wave Optics. Physical Review Physics Education Research, 2022, 18, .	2.9	4

#	Article	IF	CITATIONS
19	Comparing Student Understanding of Graphs in Physics and Mathematics. , 2019, , 233-246.		3
20	Student Difficulties with Graphs in Different Contexts. Contributions From Science Education Research, 2017, , 167-178.	0.5	3
21	Exploring secondary school students' understanding of basic phenomena relating to wave optics. Journal of Physics: Conference Series, 2021, 1929, 012007.	0.4	2
22	Probing student understanding of spectra through the use of a typical experiment used in teaching introductory modern physics. Physical Review Physics Education Research, 2020, 16, .	2.9	2
23	Students' Understanding of Diagrams in Different Contexts: Comparison of Eye Movements Between Physicists and Non-physicists Using Eye-Tracking. , 2021, , 243-260.		1
24	Measuring Scientific Reasoning Using the LCTSR. Challenges in Physics Education, 2021, , 163-169.	0.8	0