Jose M Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/998982/publications.pdf

Version: 2024-02-01

23533 12330 27,187 111 69 111 citations g-index h-index papers 118 118 118 21554 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome-Wide Insertional Mutagenesis of <i>Arabidopsis thaliana</i> . Science, 2003, 301, 653-657.	12.6	4,667
2	TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell, 2008, 133, 177-191.	28.9	1,065
3	Functional Genomic Analysis of the AUXIN RESPONSE FACTOR Gene Family Members in Arabidopsis thaliana: Unique and Overlapping Functions of ARF7 and ARF19 Â. Plant Cell, 2005, 17, 444-463.	6.6	933
4	Arabidopsis RIN4 Is a Target of the Type III Virulence Effector AvrRpt2 and Modulates RPS2-Mediated Resistance. Cell, 2003, 112, 379-389.	28.9	852
5	Class III Homeodomain-Leucine Zipper Gene Family Members Have Overlapping, Antagonistic, and Distinct Roles in Arabidopsis Development. Plant Cell, 2005, 17, 61-76.	6.6	650
6	Type-A Arabidopsis Response Regulators Are Partially Redundant Negative Regulators of Cytokinin Signaling[W]. Plant Cell, 2004, 16, 658-671.	6.6	631
7	Localization of Iron in Arabidopsis Seed Requires the Vacuolar Membrane Transporter VIT1. Science, 2006, 314, 1295-1298.	12.6	614
8	Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development (Cambridge), 2005, 132, 4107-4118.	2.5	608
9	Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes and Development, 2002, 16, 3100-3112.	5.9	598
10	Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature, 2003, 421, 79-83.	27.8	534
11	CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca2+- Permeable Channels and Stomatal Closure. PLoS Biology, 2006, 4, e327.	5.6	523
12	DELLA Proteins and Gibberellin-Regulated Seed Germination and Floral Development in Arabidopsis. Plant Physiology, 2004, 135, 1008-1019.	4.8	521
13	CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3985-3990.	7.1	519
14	Multilevel Interactions between Ethylene and Auxin in <i>Arabidopsis</i> Roots. Plant Cell, 2007, 19, 2169-2185.	6.6	498
15	GUN4, a Regulator of Chlorophyll Synthesis and Intracellular Signaling. Science, 2003, 299, 902-906.	12.6	478
16	A Link between Ethylene and Auxin Uncovered by the Characterization of Two Root-Specific Ethylene-Insensitive Mutants in Arabidopsis. Plant Cell, 2005, 17, 2230-2242.	6.6	452
17	Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature, 2001, 410, 952-954.	27.8	448
18	NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant Journal, 2005, 43, 118-130.	5.7	415

#	Article	IF	CITATIONS
19	Enhanced Fitness Conferred by Naturally Occurring Variation in the Circadian Clock. Science, 2003, 302, 1049-1053.	12.6	411
20	Multiple Type-B Response Regulators Mediate Cytokinin Signal Transduction in Arabidopsis Â. Plant Cell, 2005, 17, 3007-3018.	6.6	397
21	The Arabidopsis Histidine Phosphotransfer Proteins Are Redundant Positive Regulators of Cytokinin Signaling. Plant Cell, 2006, 18, 3073-3087.	6.6	392
22	RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson Disease–Related Copper Transporter, Is Required for Ethylene Signaling in Arabidopsis. Cell, 1999, 97, 383-393.	28.9	385
23	Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2992-2997.	7.1	380
24	<i>AUX/LAX</i> Genes Encode a Family of Auxin Influx Transporters That Perform Distinct Functions during <i>Arabidopsis</i> Development. Plant Cell, 2012, 24, 2874-2885.	6.6	373
25	A Small-Molecule Screen Identifies $<$ scp> $ < $ scp>-Kynurenine as a Competitive Inhibitor of TAA1/TAR Activity in Ethylene-Directed Auxin Biosynthesis and Root Growth in $<$ i>Arabidopsis $<$ i>Â Â. Plant Cell, 2011, 23, 3944-3960.	6.6	364
26	The <i> Arabidopsis < /i > Phytochrome-Interacting Factor PIF7, Together with PIF3 and PIF4, Regulates Responses to Prolonged Red Light by Modulating phyB Levels. Plant Cell, 2008, 20, 337-352.</i>	6.6	334
27	Functional Genomic Analysis of the AUXIN/INDOLE-3-ACETIC ACID Gene Family Members in Arabidopsis thaliana Â[W]. Plant Cell, 2005, 17, 3282-3300.	6.6	331
28	The <i>Arabidopsis</i> YUCCA1 Flavin Monooxygenase Functions in the Indole-3-Pyruvic Acid Branch of Auxin Biosynthesis. Plant Cell, 2011, 23, 3961-3973.	6.6	320
29	The \hat{I}^2 -Subunit of the Arabidopsis G Protein Negatively Regulates Auxin-Induced Cell Division and Affects Multiple Developmental Processes[W]. Plant Cell, 2003, 15, 393-409.	6.6	310
30	Gene-Specific Translation Regulation Mediated by the Hormone-Signaling Molecule EIN2. Cell, 2015, 163, 684-697.	28.9	306
31	Genome-Wide High-Resolution Mapping of Exosome Substrates Reveals Hidden Features in the Arabidopsis Transcriptome. Cell, 2007, 131, 1340-1353.	28.9	298
32	Convergence of Signaling Pathways in the Control of Differential Cell Growth in Arabidopsis. Developmental Cell, 2004, 7, 193-204.	7.0	289
33	The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16091-16098.	7.1	275
34	A Combinatorial Interplay Among the 1-Aminocyclopropane-1-Carboxylate Isoforms Regulates Ethylene Biosynthesis in <i>Arabidopsis thaliana </i>	2.9	263
35	Ethylene signaling: simple ligand, complex regulation. Current Opinion in Plant Biology, 2013, 16, 554-560.	7.1	261
36	Ethylene signaling and response: where different regulatory modules meet. Current Opinion in Plant Biology, 2009, 12, 548-555.	7.1	250

#	Article	IF	CITATIONS
37	Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Developmental Cell, 2018, 47, 306-318.e5.	7.0	243
38	Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature, 2000, 408, 816-820.	27.8	234
39	Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nature Reviews Genetics, 2006, 7, 524-536.	16.3	230
40	Potential Sites of Bioactive Gibberellin Production during Reproductive Growth in <i>Arabidopsis</i> Â. Plant Cell, 2008, 20, 320-336.	6.6	209
41	De-Etiolated 1 and Damaged DNA Binding Protein 1 Interact to Regulate Arabidopsis Photomorphogenesis. Current Biology, 2002, 12, 1462-1472.	3.9	203
42	An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 2001, 410, 487-490.	27.8	199
43	The Ethylene Signaling Pathway. Science, 2004, 306, 1513-1515.	12.6	192
44	Isolation and Characterization of phyC Mutants in Arabidopsis Reveals Complex Crosstalk between Phytochrome Signaling Pathways. Plant Cell, 2003, 15, 1962-1980.	6.6	190
45	Systems Analysis of Auxin Transport in the <i>Arabidopsis</i> Root Apex Â. Plant Cell, 2014, 26, 862-875.	6.6	190
46	50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944.	7.3	186
47	Local Auxin Sources Orient the Apical-Basal Axis in Arabidopsis Embryos. Current Biology, 2013, 23, 2506-2512.	3.9	182
48	The <i>Arabidopsis</i> 14-3-3 Protein RARE COLD INDUCIBLE 1A Links Low-Temperature Response and Ethylene Biosynthesis to Regulate Freezing Tolerance and Cold Acclimation Â. Plant Cell, 2014, 26, 3326-3342.	6.6	178
49	PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10134-10139.	7.1	176
50	Mutations in the Ca2+/H+ Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation Response in Arabidopsis. Plant Cell, 2003, 15, 2940-2951.	6.6	170
51	Translation regulation in plants: an interesting past, an exciting present and a promising future. Plant Journal, 2017, 90, 628-653.	5.7	167
52	GCR1 Can Act Independently of Heterotrimeric G-Protein in Response to Brassinosteroids and Gibberellins in Arabidopsis Seed Germination. Plant Physiology, 2004, 135, 907-915.	4.8	160
53	Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nature Cell Biology, 2009, 11, 731-738.	10.3	153
54	Regulation of flowering time in Arabidopsis by K homology domain proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12759-12764.	7.1	150

#	Article	IF	CITATIONS
55	An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant Journal, 2004, 41, 304-318.	5.7	148
56	Phytochrome-Specific Type 5 Phosphatase Controls Light Signal Flux by Enhancing Phytochrome Stability and Affinity for a Signal Transducer. Cell, 2005, 120, 395-406.	28.9	148
57	A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 2018, 9, 1409.	12.8	146
58	A Role for Peroxisomes in Photomorphogenesis and Development of Arabidopsis. Science, 2002, 297, 405-409.	12.6	144
59	RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. Journal of Experimental Botany, 2006, 57, 2697-2708.	4.8	128
60	Transcriptional control of tissue formation throughout root development. Science, 2015, 350, 426-430.	12.6	128
61	Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochemical Journal, 2000, 347, 749.	3.7	125
62	Flagellin Is Not a Major Defense Elicitor in Ralstonia solanacearum Cells or Extracts Applied to Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2004, 17, 696-706.	2.6	111
63	An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nature Protocols, 2007, 2, 2910-2917.	12.0	111
64	Downregulation of ClpR2 Leads to Reduced Accumulation of the ClpPRS Protease Complex and Defects in Chloroplast Biogenesis in Arabidopsis. Plant Cell, 2006, 18, 1704-1721.	6.6	110
65	A Homolog of Prokaryotic Thiol Disulfide Transporter CcdA Is Required for the Assembly of the Cytochrome bf Complex in Arabidopsis Chloroplasts. Journal of Biological Chemistry, 2004, 279, 32474-32482.	3.4	90
66	Genetic aspects of auxin biosynthesis and its regulation. Physiologia Plantarum, 2014, 151, 3-12.	5.2	88
67	NPSN11 Is a Cell Plate-Associated SNARE Protein That Interacts with the Syntaxin KNOLLE. Plant Physiology, 2002, 129, 530-539.	4.8	84
68	Functional Characterization of Type-B Response Regulators in the Arabidopsis Cytokinin Response Â. Plant Physiology, 2013, 162, 212-224.	4.8	82
69	Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs. Physiologia Plantarum, 2005, 123, 195-206.	5.2	77
70	Auxin Influx Carriers Control Vascular Patterning and Xylem Differentiation in Arabidopsis thaliana. PLoS Genetics, 2015, 11, e1005183.	3.5	70
71	A Growth Regulatory Loop That Provides Homeostasis to Phytochrome A Signaling [W]. Plant Cell, 2003, 15, 2966-2978.	6.6	67
72	A WD40 Domain Cyclophilin Interacts with Histone H3 and Functions in Gene Repression and Organogenesis in Arabidopsis. Plant Cell, 2007, 19, 2403-2416.	6.6	66

#	Article	IF	CITATIONS
73	A recombineeringâ€based gene tagging system for Arabidopsis. Plant Journal, 2011, 66, 712-723.	5.7	64
74	Molecular mechanisms of ethylene signaling in Arabidopsis. Molecular BioSystems, 2006, 2, 165.	2.9	60
75	Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nature Communications, 2013, 4, 2779.	12.8	60
76	To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses. Plants, 2022, 11, 33.	3.5	58
77	Transcriptomic Analysis in Strawberry Fruits Reveals Active Auxin Biosynthesis and Signaling in the Ripe Receptacle. Frontiers in Plant Science, 2017, 8, 889.	3.6	55
78	Microtubule-Dependent Confinement of a Cell Signaling and Actin Polymerization Control Module Regulates Polarized Cell Growth. Current Biology, 2018, 28, 2459-2466.e4.	3.9	52
79	CESA TRAFFICKING INHIBITOR Inhibits Cellulose Deposition and Interferes with the Trafficking of Cellulose Synthase Complexes and Their Associated Proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1. Plant Physiology, 2015, 167, 381-393.	4.8	46
80	Gibberellins negatively modulate ovule number in plants. Development (Cambridge), 2018, 145, .	2.5	41
81	T-DNA Mutagenesis in Arabidopsis. , 2003, 236, 177-188.		38
82	Arabidopsis Ethylene Signaling Pathway. Science Signaling, 2005, 2005, cm4-cm4.	3.6	38
83			
	Auxin catabolism unplugged: Role of IAA oxidation in auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10742-10744.	7.1	37
84	Auxin catabolism unplugged: Role of IAA oxidation in auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10742-10744. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039990.	7.1 5.5	30
	Academy of Sciences of the United States of America, 2016, 113, 10742-10744. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harbor Perspectives in		
84	Academy of Sciences of the United States of America, 2016, 113, 10742-10744. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039990.	5.5	30
84	Academy of Sciences of the United States of America, 2016, 113, 10742-10744. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039990. Molecular Mechanisms of Ethylene–Auxin Interaction. Molecular Plant, 2013, 6, 1734-1737. RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science, 2019, 281,	5.5 8.3	30
84 85 86	Academy of Sciences of the United States of America, 2016, 113, 10742-10744. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039990. Molecular Mechanisms of Ethylene–Auxin Interaction. Molecular Plant, 2013, 6, 1734-1737. RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science, 2019, 281, 82-92. Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two	5.5 8.3 3.6	30 26 26
84 85 86	Academy of Sciences of the United States of America, 2016, 113, 10742-10744. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039990. Molecular Mechanisms of Ethylene–Auxin Interaction. Molecular Plant, 2013, 6, 1734-1737. RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science, 2019, 281, 82-92. Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. Plant Journal, 2020, 102, 1026-1041.	5.5 8.3 3.6 5.7	30 26 26

#	Article	IF	CITATIONS
91	Genome-Wide Search for Translated Upstream Open Reading Frames in Arabidopsis Thaliana. IEEE Transactions on Nanobioscience, 2016, 15, 148-157.	3.3	16
92	RiboStreamR: a web application for quality control, analysis, and visualization of Ribo-seq data. BMC Genomics, 2019, 20, 422.	2.8	16
93	Kinetic analysis of <i>Arabidopsis</i> glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition. Biochemical Journal, 2013, 450, 37-46.	3.7	15
94	Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis. Journal of Experimental Botany, 2020, 71, 7059-7072.	4.8	14
95	Ethylene Signaling Pathway. Science Signaling, 2005, 2005, cm3-cm3.	3.6	13
96	Development of a relative quantification method for infrared matrixâ€assisted laser desorption electrospray ionization mass spectrometry imaging of Arabidopsis seedlings. Rapid Communications in Mass Spectrometry, 2020, 34, e8616.	1.5	12
97	Leveraging synthetic biology approaches in plant hormone research. Current Opinion in Plant Biology, 2021, 60, 101998.	7.1	11
98	Bypassing Transcription: A Shortcut in Cytokinin-Auxin Interactions. Developmental Cell, 2011, 21, 608-610.	7.0	9
99	A Recombineering-Based Gene Tagging System for Arabidopsis. Methods in Molecular Biology, 2015, 1227, 233-243.	0.9	9
100	Arabidopsis Transformation with Large Bacterial Artificial Chromosomes. Methods in Molecular Biology, 2014, 1062, 271-283.	0.9	9
101	PCR-Based Screening for Insertional Mutants. , 2006, 323, 163-172.		8
102	From Ethylene-Auxin Interactions to Auxin Biosynthesis and Signal Integration. Plant Cell, 2019, 31, 1393-1394.	6.6	6
103	A Stacking-Based Approach to Identify Translated Upstream Open Reading Frames in Arabidopsis Thaliana. Lecture Notes in Computer Science, 2015, , 138-149.	1.3	6
104	A Ribo-Seq Method to Study Genome-Wide Translational Regulation in Plants. Methods in Molecular Biology, 2022, 2494, 61-98.	0.9	6
105	A Ribosome Footprinting Protocol for Plants. Bio-protocol, 2016, 6, .	0.4	4
106	Structure–Function Analysis of Interallelic Complementation in <i>ROOTY</i> Transheterozygotes. Plant Physiology, 2020, 183, 1110-1125.	4.8	3
107	Cutting Out the Middle Man in Light-Hormone Interactions. Developmental Cell, 2016, 39, 524-526.	7.0	2
108	Tandem C2 domains mediate dynamic organelle targeting of a DOCK family guanine nucleotide exchange factor. Journal of Cell Science, 2022, 135, .	2.0	2

#	Article	IF	CITATIONS
109	RiboSimR: A Tool for Simulation and Power Analysis of Ribo-seq Data. Lecture Notes in Computer Science, 2020, , 121-133.	1.3	1
110	Deep sequencing of ribosomal footprints for studying genome-wide mRNA translation in plants. , 2013, , .		0
111	Mining transcript features related to translation in Arabidopsis using LASSO and random forest. , 2015, , .		0