Jonathan Leis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9989062/publications.pdf

Version: 2024-02-01

430874 642732 1,805 25 18 23 h-index citations g-index papers 26 26 26 1299 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	llaprazole and Other Novel Prazole-Based Compounds That Bind Tsg 101 Inhibit Viral Budding of Herpes Simplex Virus 1 and 2 and Human Immunodeficiency Virus from Cells. Journal of Virology, $2021,95,.$	3.4	12
2	Tsg101 chaperone function revealed by HIV-1 assembly inhibitors. Nature Communications, 2017, 8, 1391.	12.8	37
3	Budding of Enveloped Viruses: Interferon-Induced ISG15â€"Antivirus Mechanisms Targeting the Release Process. Advances in Virology, 2012, 2012, 1-10.	1.1	15
4	Mechanism of Inhibition of Retrovirus Release from Cells by Interferon-Induced Gene ISG15. Journal of Virology, 2011, 85, 7153-7161.	3.4	55
5	The Interferon-Induced Gene ISG15 Blocks Retrovirus Release from Cells Late in the Budding Process. Journal of Virology, 2010, 84, 4725-4736.	3.4	132
6	The Mechanism of Budding of Retroviruses from Cell Membranes. Advances in Virology, 2009, 2009, 1-9.	1.1	63
7	Defining the DNA Substrate Binding Sites on HIV-1 Integrase. Journal of Molecular Biology, 2009, 385, 568-579.	4.2	28
8	Integrase: Structure, Function, and Mechanism., 2009, , 467-478.		O
9	Tsg101 can replace Nedd4 function in ASV Gag release but not membrane targeting. Virology, 2008, 377, 30-38.	2.4	33
10	Avian Sarcoma Virus and Human Immunodeficiency Virus, Type 1 Use Different Subsets of ESCRT Proteins to Facilitate the Budding Process. Journal of Biological Chemistry, 2008, 283, 29822-29830.	3.4	48
11	Identification of Amino Acids in HIV-1 and Avian Sarcoma Virus Integrase Subsites Required for Specific Recognition of the Long Terminal Repeat Ends. Journal of Biological Chemistry, 2006, 281, 4173-4182.	3.4	66
12	The Functionally Exchangeable L Domains in RSV and HIV-1 Gag Direct Particle Release Through Pathways Linked by Tsg101. Traffic, 2005, 6, 880-894.	2.7	50
13	Role of Nedd4 and Ubiquitination of Rous Sarcoma Virus Gag in Budding of Virus-Like Particles from Cells. Journal of Virology, 2004, 78, 13943-13953.	3.4	57
14	Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin., 2004,, 163-166.		0
15	Changes in the Mechanism of DNA Integration in Vitro Induced by Base Substitutions in the HIV-1 U5 and U3 Terminal Sequences. Journal of Biological Chemistry, 2002, 277, 10938-10948.	3.4	13
16	HIV-1 Integrase Interaction with U3 and U5 Terminal Sequences in Vitro Defined Using Substrates with Random Sequences. Journal of Biological Chemistry, 2002, 277, 18357-18364.	3.4	20
17	Base-Pair Substitutions in Avian Sarcoma Virus U5 and U3 Long Terminal Repeat Sequences Alter the Process of DNA Integration In Vitro. Journal of Virology, 2001, 75, 1132-1141.	3.4	16
18	Structural Basis for Specificity of Retroviral Proteasesâ€. Biochemistry, 1998, 37, 4518-4526.	2.5	41

#	Article	IF	CITATION
19	Human Immunodeficiency Virus, Type 1 Protease Substrate Specificity Is Limited by Interactions between Substrate Amino Acids Bound in Adjacent Enzyme Subsites. Journal of Biological Chemistry, 1996, 271, 4709-4717.	3.4	49
20	Programming the Rous Sarcoma Virus Protease to Cleave New Substrate Sequences. Journal of Biological Chemistry, 1996, 271, 10538-10544.	3.4	25
21	Development of Drug Resistance to HIV-1 Protease Inhibitors. Journal of Biological Chemistry, 1995, 270, 29621-29623.	3.4	109
22	The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell, 1990, 63, 87-95.	28.9	442
23	Structure of the aspartic protease from Rous sarcoma retrovirus refined at 2ANG. resolution. Biochemistry, 1990, 29, 5889-5898.	2.5	100
24	Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature, 1989, 337, 576-579.	27.8	378
25	Retroviral DNA integration. BioEssays, 1984, 1, 206-210.	2.5	14