Khandaker Rayhan Mahbub

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/998905/publications.pdf

Version: 2024-02-01

567281 580821 31 680 15 25 citations h-index g-index papers 31 31 31 789 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Mercury toxicity to terrestrial biota. Ecological Indicators, 2017, 74, 451-462.	6.3	88
2	Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere, 2016, 144, 330-337.	8.2	71
3	Bioremediation of mercury: not properly exploited in contaminated soils!. Applied Microbiology and Biotechnology, 2017, 101, 963-976.	3.6	54
4	Bio-augmentation and nutrient amendment decrease concentration of mercury in contaminated soil. Science of the Total Environment, 2017, 576, 303-309.	8.0	43
5	Mercury resistance and volatilization by Pseudoxanthomonas sp. SE1 isolated from soil. Environmental Technology and Innovation, 2016, 6, 94-104.	6.1	41
6	Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values. Applied Microbiology and Biotechnology, 2017, 101, 2163-2175.	3.6	38
7	Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil. Journal of Environmental Sciences, 2017, 51, 128-137.	6.1	33
8	The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. Environmental Pollution, 2022, 293, 118506.	7.5	33
9	Development of a whole cell biosensor for the detection of inorganic mercury. Environmental Technology and Innovation, 2017, 8, 64-70.	6.1	27
10	Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 76-82.	2.7	26
11	Characterization of Antibiotic Resistant <i>Salmonella spp</i> Isolated from Chicken Eggs of Dhaka City. Journal of Scientific Research, 2010, 3, 191.	0.3	25
12	Regional and oyster microenvironmental scale heterogeneity in the Pacific oyster bacterial community. FEMS Microbiology Ecology, 2020, 96, .	2.7	21
13	Long-lasting effect of mercury contamination on the soil microbiota and its co-selection of antibiotic resistance. Environmental Pollution, 2020, 265, 115057.	7.5	19
14	<i>In vitro</i> antibacterial activity of shrimp chitosan against <i>Salmonela paratyphi</i> and <i>Staphylococcus aureus</i> . Journal of Bangladesh Chemical Society, 2012, 24, 185-190.	0.3	17
15	The Sydney rock oyster microbiota is influenced by location, season and genetics. Aquaculture, 2020, 527, 735472.	3 . 5	17
16	Decolorization of Synthetic Dyes Using Bacteria Isolated from Textile Industry Effluent. Asian Journal of Biotechnology, 2012, 4, 129-136.	0.3	17
17	Quality Analysis of Dhaka WASA Drinking Water: Detection and. Journal of Environmental Science and Natural Resources, 2012, 4, 41-49.	0.2	16
18	As(V) removal from aqueous solution using a low-cost adsorbent coir pith ash: Equilibrium and kinetic study. Environmental Technology and Innovation, 2018, 9, 198-209.	6.1	16

#	Article	IF	CITATIONS
19	Mercury toxicity to Eisenia fetida in three different soils. Environmental Science and Pollution Research, 2017, 24, 1261-1269.	5.3	15
20	Are the existing guideline values adequate to protect soil health from inorganic mercury contamination?. Environment International, 2018, 117, 10-15.	10.0	15
21	Predicting plant uptake and toxicity of lead (Pb) in long-term contaminated soils from derived transfer functions. Environmental Science and Pollution Research, 2016, 23, 15460-15470.	5.3	11
22	Toxicity of Inorganic Mercury to Native Australian Grass Grown in Three Different Soils. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 850-855.	2.7	11
23	Protozoal food vacuoles enhance transformation in <i>Vibrio cholerae</i> through SOS-regulated DNA integration. ISME Journal, 2022, 16, 1993-2001.	9.8	9
24	Effect of 10% Concentrations of Salt, Garlic and Coriander on the Quality of Smoked Hilsa Fish (Tenualosa ilisha). American Journal of Food Technology, 2012, 7, 501-505.	0.2	5
25	Growth response of Spirulina platensis in papaya skin extract and antimicrobial activities of Spirulina extracts in different culture media. Bangladesh Journal of Scientific and Industrial Research, 2012, 47, 147-152.	0.3	3
26	A simple spectrophotometric method for rapid quantitative screening of arsenic bio-transforming bacteria. Environmental Technology and Innovation, 2020, 19, 100840.	6.1	3
27	Growth response of Aspergillus flavus IMS1103 isolated from poultry feed. Asian Journal of Medical and Biological Research, 2016, 2, 221-228.	0.2	2
28	Dynamics of the Sydney rock oyster microbiota before and during a QX disease event. Aquaculture, 2021, 541, 736821.	3.5	2
29	Microbiological Quality of Street Vended Drinking Water in Dhaka City and Screening for Antibiotics Resistance of Isolated <i>Salmonella spp</i> and <i>Pseudomonas spp.</i> Journal of Scientific Research, 2014, 6, 359-371.	0.3	1
30	Fishing Gears and Crafts Commonly Used at Hatiya Island: A Coastal Region of Bangladesh. Asian Journal of Agricultural Research, 2013, 8, 51-58.	0.4	1
31	The sydney rock oyster microbiome is influenced by local environmental parameters and QX disease resistance. Fish and Shellfish Immunology, 2019, 91, 438.	3.6	O