
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/99873/publications.pdf Version: 2024-02-01

LIUSA CADDULO

#	Article	IF	CITATIONS
1	Kinetic Resolution in Transannular Morita-Baylis-Hillman Reaction: An Approximation to the Synthesis of Sesquiterpenes from Guaiane Family. Catalysts, 2022, 12, 67.	3.5	1
2	An Approach to the Synthesis of a Hepatitis C Virus Inhibitor through a Proline-Catalyzed 1,3-Dipolar Cycloaddition Using Acrolein. Synthesis, 2022, 54, 1101-1107.	2.3	1
3	Recent Developments in Transannular Reactions. Synthesis, 2022, 54, 4167-4183.	2.3	8
4	Enantioselective construction of the 8-azabicyclo[3.2.1]octane scaffold: application in the synthesis of tropane alkaloids. Organic and Biomolecular Chemistry, 2021, 19, 3763-3775.	2.8	5
5	Catalytic enantioselective domino Michael/transannular aldol reaction under bifunctional catalysis. Chemical Communications, 2020, 56, 13149-13152.	4.1	14
6	Î ³ -Substituted Allenic Amides in the Phosphine-Catalyzed Enantioselective Higher Order Cycloaddition with Azaheptafulvenes. Organic Letters, 2020, 22, 4721-4725.	4.6	19
7	Enantioselective Synthesis of Tropanes: BrÃ,nsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie - International Edition, 2020, 59, 6780-6784.	13.8	15
8	Enantioselective Synthesis of Tropanes: BrÃ,nsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie, 2020, 132, 6846-6850.	2.0	5
9	Catalytic Enantioselective Transannular Morita–Baylis–Hillman Reaction. Journal of the American Chemical Society, 2019, 141, 9495-9499.	13.7	30
10	Carboxylates as Nucleophiles in the Enantioselective Ringâ€Opening of Formylcyclopropanes under Iminium Ion Catalysis. Chemistry - A European Journal, 2018, 24, 8764-8768.	3.3	19
11	Organocatalytic Transannular Approach to Stereodefined Bicyclo[3.1.0]hexanes. Journal of Organic Chemistry, 2018, 83, 4180-4189.	3.2	11
12	Highly diastereoselective C → N acyl rearrangement in polysubstituted pyrrolidine 2,2-dicarboxylates. Stereocontrolled synthesis of densely functionalized prolines. Organic Chemistry Frontiers, 2018, 5, 933-942.	4.5	3
13	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie, 2018, 130, 8357-8361.	2.0	36
14	Ion-pairing catalysis in the enantioselective addition of hydrazones to <i>N</i> -acyldihydropyrrole derivatives. Chemical Communications, 2018, 54, 8905-8908.	4.1	18
15	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 8225-8229.	13.8	86
16	Racemic hemiacetals as oxygen-centered pronucleophiles triggering cascade 1,4-addition/Michael reaction through dynamic kinetic resolution under iminium catalysis. Development and mechanistic insights. Chemical Science, 2017, 8, 2904-2913.	7.4	17
17	Regioselectivity Change in the Organocatalytic Enantioselective (3+2) Cycloaddition with Nitrones through Cooperative Hydrogenâ€Bonding Catalysis/Iminium Activation. Chemistry - A European Journal, 2017, 23, 2764-2768.	3.3	17
18	Catalytic Generation of Donorâ€Acceptor Cyclopropanes under <i>N</i> â€Heterocyclic Carbene Activation and their Stereoselective Reaction with Alkylideneoxindoles. Advanced Synthesis and Catalysis, 2017, 359, 1678-1683.	4.3	40

#	Article	IF	CITATIONS
19	Enantioselective Cascade Reactions under N-Heterocyclic Carbene Catalysis. Synthesis, 2017, 49, 451-471.	2.3	42
20	Enantioselective Oxidative (4+3) Cycloadditions between Allenamides and Furans through Bifunctional Hydrogenâ€Bonding/Ionâ€Pairing Interactions. Angewandte Chemie - International Edition, 2017, 56, 10535-10538.	13.8	54
21	Enantioselective Oxidative (4+3) Cycloadditions between Allenamides and Furans through Bifunctional Hydrogenâ€Bonding/Ionâ€Pairing Interactions. Angewandte Chemie, 2017, 129, 10671-10674.	2.0	13
22	Mechanistic Insights into the Mode of Action of Bifunctional Pyrrolidine‣quaramideâ€Đerived Organocatalysts. Chemistry - A European Journal, 2016, 22, 884-889.	3.3	19
23	Organocatalytic enantio- and diastereoselective synthesis of 3,5-disubstituted prolines. Chemical Communications, 2016, 52, 2330-2333.	4.1	5
24	Organocatalytically Generated Donor–Acceptor Cyclopropanes in Domino Reactions. One-Step Enantioselective Synthesis of Pyrrolo[1,2- <i>a</i>]quinolines. Organic Letters, 2016, 18, 1270-1273.	4.6	60
25	Catalytic Enantioselective [5+2] Cycloaddition between Oxidopyrylium Ylides and Enals under Dienamine Activation. Angewandte Chemie, 2015, 127, 3086-3089.	2.0	20
26	Organocatalytic and enantioselective Michael reaction between α-nitroesters and nitroalkenes. Syn/anti-selectivity control using catalysts with the same absolute backbone chirality. Beilstein Journal of Organic Chemistry, 2015, 11, 2577-2583.	2.2	5
27	Organocatalytic Enantioselective [3+2] Cycloaddition of Azomethine Ylides and Acrolein. Asymmetric Catalysis, 2015, 2, .	0.2	2
28	4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides in catalytic and enantioselective [4 + 2] cycloaddition through iminium activation. Straightforward access to the trans-decaline framework and to densely functionalized cyclohexanes. Organic Chemistry Frontiers, 2015, 2, 206-210.	4.5	6
29	Catalytic Enantioselective [5+2] Cycloaddition between Oxidopyrylium Ylides and Enals under Dienamine Activation. Angewandte Chemie - International Edition, 2015, 54, 3043-3046.	13.8	65
30	Enantioselective Synthesis of Tertiary Propargylic Alcohols under Nâ€Heterocyclic Carbene Catalysis. Chemistry - A European Journal, 2015, 21, 8384-8388.	3.3	27
31	Favoring Trienamine Activation through Unconjugated Dienals: Organocatalytic Enantioselective Remote Functionalization of Alkenes. Chemistry - A European Journal, 2014, 20, 2145-2148.	3.3	28
32	Ethyl Glyoxylate <i>N</i> -Tosylhydrazone as Sulfonyl-Transfer Reagent in Base-Catalyzed Sulfa-Michael Reactions. Journal of Organic Chemistry, 2014, 79, 441-445.	3.2	35
33	Baseâ€Promoted C→N Acyl Rearrangement: An Unconventional Approach to αâ€Amino Acid Derivatives. Chemistry - A European Journal, 2014, 20, 11650-11654.	3.3	18
34	Bifunctional Squaramide Catalysts with the Same Absolute Chirality for the Diastereodivergent Access to Densely Functionalised Cyclohexanes through Enantioselective Domino Reactions. Synthesis and Mechanistic Studies. Advanced Synthesis and Catalysis, 2014, 356, 3627-3648.	4.3	47
35	Transannular reactions in asymmetric total synthesis. Tetrahedron, 2014, 70, 9461-9484.	1.9	60
36	Base Free Catalyzed Enantioselective Michael Reaction of bis(phenylsulfonyl)methane to α,β -Unsaturated Aldehydes under Iminium Activation. Current Topics in Medicinal Chemistry, 2014, 14, 1317-1322.	2.1	1

#	÷	Article	IF	CITATIONS
3	7	The organocatalytic enantioselective [3+2] cycloaddition reaction of α,β-unsaturated aldehydes with azomethine ylides applied to the asymmetric synthesis of densely substituted pyrroloisoquinolines. Tetrahedron, 2013, 69, 8878-8884.	1.9	8
3	8	A general approach for the asymmetric synthesis of densely substituted piperidines and fully substituted piperidinones employing the asymmetric Mannich reaction as key step. RSC Advances, 2013, 3, 25800.	3.6	4
3	9	Using Heteroaryl-lithium Reagents as Hydroxycarbonyl Anion Equivalents in Conjugate Addition Reactions with (S,S)-(+)-Pseudoephedrine as Chiral Auxiliary; Enantioselective Synthesis of 3-Substituted Pyrrolidines. Journal of Organic Chemistry, 2013, 78, 614-627.	3.2	15
4	0	Optimizing the Structure of 4â€Dialkylaminoâ€Î±,αâ€diarylprolinol Ethers as Catalysts for the Enantioselective Cyclopropanation of α,βâ€Unsaturated Aldehydes in Water. ChemCatChem, 2013, 5, 2240-2247.	3.7	18
4	1	Using Conveniently Designed αâ€Amino Ketones in Michael Reactions under Iminium Catalysis: Enantioselective Synthesis of γâ€Lactams and γâ€Aminoâ€Î´â€keto Esters. Advanced Synthesis and Catalysis, 20 355, 653-658.	1 3, 3	17
4	2	A Simple Synthesis of Polysubstituted Pyrrolidines by an Organocatalytic Three-Component Approach Featuring a One-Pot Condensation and [3+2]-Cycloaddition Reaction in Aqueous Medium. Synthesis, 2013, 45, 2669-2678.	2.3	10
4	-3	Enantio- and Diastereoselective Synthesis of Substituted Tetrahydro-1 <i>H</i> -isochromanes through a Dynamic Kinetic Resolution Proceeding under Dienamine Catalysis. Organic Letters, 2012, 14, 3740-3743.	4.6	50
4	4	Organocatalytic enantioselective synthesis of 2,3-dihydropyridazines. Chemical Communications, 2012, 48, 2092.	4.1	34
4	-5	Enantioselective Conjugate Addition of Donor–Acceptor Hydrazones to α,β-Unsaturated Aldehydes through Formal Diaza–Ene Reaction: Access to 1,4-Dicarbonyl Compounds. Journal of the American Chemical Society, 2012, 134, 11872-11875.	13.7	59
4	-6	Organocatalytic Enantioselective aza-Michael Reactions. Current Organic Chemistry, 2012, 16, 521-546.	1.6	35
4	7	Cooperative Dienamine/Hydrogenâ€Bonding Catalysis: Enantioselective Formal [2+2] Cycloaddition of Enals with Nitroalkenes. Angewandte Chemie - International Edition, 2012, 51, 4104-4107.	13.8	158
4	8	An Amineâ€Catalyzed Enantioselective [3+2] Cycloaddition of Azomethine Ylides and α,βâ€Unsaturated Aldehydes: Applications and Mechanistic Implications. Chemistry - A European Journal, 2012, 18, 7179-7188.	3.3	58
4	.9	Organocatalytic Enantioselective Synthesis of Pyrazolidines, Pyrazolines and Pyrazolidinones. Advanced Synthesis and Catalysis, 2012, 354, 371-376.	4.3	58
5	0	Organocatalytic enantioselective (3+2) cycloaddition using stable azomethine ylides. Chemical Communications, 2011, 47, 12313.	4.1	58
5	1	5-Mercaptotetrazoles as Synthetic Equivalents of Nitrogen-Contaning Functional Groups. The Case of the Organocatalytic Enantioselective aza-Michael Reaction. Organic Letters, 2011, 13, 336-339.	4.6	27
5	2	Role of Pseudoephedrine as Chiral Auxiliary in the "Acetate-Type―Aldol Reaction with Chiral Aldehydes; Asymmetric Synthesis of Highly Functionalized Chiral Building Blocks. Journal of Organic Chemistry, 2011, 76, 460-470.	3.2	14
5	3	Complete 2,5â€Diastereocontrol in the Organocatalytic Enantioselective [3+2] Cycloaddition of Enals with Azomethine Ylides Derived from αâ€Iminocyanoacetates: Asymmetric Synthesis of Pyrrolidines with Four Stereocentres. Advanced Synthesis and Catalysis, 2011, 353, 3307-3312.	4.3	27
5	4	Organocatalytic Enantioselective Formal Conjugate Addition of a Hydroxymoyl Anion to α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2011, 17, 6048-6051.	3.3	9

#	Article	IF	CITATIONS
55	Stereoselective Total Synthesis of (-)-β-Conhydrine and (+)-α-Conhydrine. Synthesis, 2011, 2011, 443-450.	2.3	4
56	â€~On Water' Iminium/Enamine Catalysis: Organocatalytic Enantioselective Cyclopropanation of α,β-Unsaturated Aldehydes. Synthesis, 2010, 2010, 701-713.	2.3	9
57	The organocatalytic [3+2] cycloaddition of azomethine ylides and α,β-unsaturated aldehydes as a convenient tool for the enantioselective synthesis of pyrrolizidines and indolizidines. Organic and Biomolecular Chemistry, 2010, 8, 2238.	2.8	40
58	Enantioselective Organocatalytic Domino Oxaâ€Michael/Aldol/Hemiacetalization: Synthesis of Polysubstituted Furofuranes Containing Four Stereocenters. Angewandte Chemie - International Edition, 2009, 48, 5701-5704.	13.8	96
59	Highly Regio- and Stereoselective Addition of Organolithium Reagents to Extended Conjugate Amides Using (S,S)-(+)-Pseudoephedrine as Chiral Auxiliary. Journal of Organic Chemistry, 2009, 74, 4404-4407.	3.2	22
60	Organocatalytic Enantioselective Synthesis of Highly Functionalized Polysubstituted Pyrrolidines. Chemistry - A European Journal, 2008, 14, 9357-9367.	3.3	45
61	(S,S)-(+)-Pseudoephedrine α-Iminoglyoxylamide as a Chiral Glycine Cation Equivalent: A Modular and Flexible Approach to Enantioenriched α-Amino Ketones. Organic Letters, 2008, 10, 2613-2616.	4.6	9
62	Organocatalytic Enantioselective Michael and Hetero-Michael Reactions. Synthesis, 2007, 2007, 2007, 2065-2092.	2.3	605
63	Organocatalytic enantioselective aza-Michael reaction of nitrogen heterocycles and α,β-unsaturated aldehydes. Chemical Communications, 2007, , 2509-2511.	4.1	66
64	Organocatalytic Enantioselective [3+2] Cycloaddition of Azomethine Ylides and α,β-Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 5168-5170.	13.8	228
65	A general and enantiodivergent method for the asymmetric synthesis of piperidine alkaloids: concise synthesis of (R)-pipecoline, (S)-coniine and other 2-alkylpiperidines. Tetrahedron, 2007, 63, 11421-11428.	1.9	16
66	An improved procedure for the preparation of chiral nonracemic N-tosyl-2-alkylaziridines and N,2-dialkylaziridines on multigram-scale. Arkivoc, 2007, 2007, 304-311.	0.5	0
67	Organocatalytic Asymmetric Michael Addition of Aldehydes to β-Nitroacroleine Dimethyl Acetal. Organic Letters, 2006, 8, 6135-6138.	4.6	84
68	(S,S)-(+)-Pseudoephedrine as Chiral Auxiliary in Asymmetric Conjugate Addition and Tandem Conjugate Addition/α-Alkylation Reactions. Journal of Organic Chemistry, 2006, 71, 7763-7772.	3.2	46
69	Tandem Asymmetric Conjugate Addition/α-Alkylation Using (S,S)-(+)-Pseudoephedrine as Chiral Auxiliary. Organic Letters, 2006, 8, 2535-2538.	4.6	32
70	α-Amino Acids, β-Amino Alcohols and Related Compounds as Chiral Auxiliaries, Ligands and Catalysts in the Asymmetric Aldol Reaction. ChemInform, 2006, 37, no.	0.0	0
71	(+)-(S,S)-Pseudoephedrine as a Chiral Auxiliary in Asymmetric Mannich Reactions: Scope and Limitations. Synthesis, 2006, 2006, 4065-4074.	2.3	2
72	A Direct and Efficient Stereoconservative Procedure for the Selective Oxidation of N-Protected β-Amino Alcohols. Synlett, 2005, 2005, 2110-2112.	1.8	5

#	Article	IF	CITATIONS
73	(S,S)-(+)-Pseudoephedrine as Chiral Auxiliary in Asymmetric Aza-Michael Reactions. Unexpected Selectivity Change when Manipulating the Structure of the Auxiliary. Journal of Organic Chemistry, 2005, 70, 8790-8800.	3.2	33
74	THE ASYMMETRIC <i>AZA</i> -MICHAEL REACTION. A REVIEW. Organic Preparations and Procedures International, 2005, 37, 513-538.	1.3	100
75	(S,S)-(+)-Pseudoephedrine as chiral auxiliary in asymmetric acetate aldol reactions. Organic and Biomolecular Chemistry, 2005, 3, 2026.	2.8	16
76	α-Amino Acids, β-Amino Alcohols and Related Compounds as Chiral Auxiliaries, Ligands and Catalysts in the Asymmetric Aldol Reaction. Current Organic Chemistry, 2005, 9, 219-235.	1.6	80
77	Stereoselective Synthesis of Aporphine Alkaloids Using a Hypervalent IodineÂ(III) Reagent-Promoted Oxidative Nonphenolic Biaryl Coupling ReactionÂ . Total Synthesis of (S)-(+)-Glaucine. Synthesis, 2004, 2004, 1093-1101.	2.3	5
78	α-Amino Acids and Derivatives in the Asymmetric Synthesis of Tetrahydroisoquinoline Alkaloids. ChemInform, 2004, 35, no.	0.0	0
79	Double Stereodifferentiation in the "Acetate-Type―Aldol Reaction with Garner′s Aldehyde. Stereocontrolled Synthesis of Polyhydroxylated γ-Amino Carbonyl Compounds ChemInform, 2004, 35, no.	0.0	0
80	Asymmetric Synthesis of β-Amino Esters by Aza-Michael Reaction of α,β-Unsaturated Amides Using (S,S)-(+)-Pseudoephedrine as Chiral Auxiliary. Journal of Organic Chemistry, 2004, 69, 2588-2590.	3.2	35
81	Double Stereodifferentiation in the "Acetate-Type―Aldol Reaction with Garner's Aldehyde. Stereocontrolled Synthesis of Polyhydroxylated γ-Amino Carbonyl Compounds. Organic Letters, 2004, 6, 3171-3174.	4.6	26
82	Asymmetric Hydroxylation of (S,S)-(+)-Pseudoephedrine Phenylacetamide Enolates. Letters in Organic Chemistry, 2004, 1, 331-334.	0.5	1
83	A General Procedure for the Asymmetric Synthesis of 3-Aryl-1,2,3,4-tetrahydroisoquinolines ChemInform, 2003, 34, no.	0.0	0
84	An Easy and Straightforward Approach to the Asymmetric Synthesis of Isoflavanones ChemInform, 2003, 34, no.	0.0	0
85	A general procedure for the asymmetric synthesis of 3-aryl-1,2,3,4-tetrahydroisoquinolines. Tetrahedron: Asymmetry, 2003, 14, 347-353.	1.8	11
86	An easy and straightforward approach to the asymmetric synthesis of isoflavanones. Tetrahedron: Asymmetry, 2003, 14, 489-495.	1.8	27
87	α-Amino Acids and Derivatives in the Asymmetric Synthesis of Tetrahydroisoquinoline Alkaloids. Current Organic Chemistry, 2003, 7, 1775-1792.	1.6	28
88	Asymmetric synthesis of 1,2-diaryl-2-amino ethanols. Tetrahedron: Asymmetry, 2002, 13, 745-751.	1.8	15
89	Aziridine Ring-Opening Reactions with Chiral Enolates. Stereocontrolled Synthesis of 5-Substituted-3-methyl-pyrrolidin-2-ones. Journal of Organic Chemistry, 2001, 66, 5801-5807.	3.2	59
90	Stereocontrolled Mannich Reaction with Enolizable Imines Using (S,S)-(+)-Pseudoephedrine as Chiral Auxiliary. Asymmetric Synthesis of α,Î2-Disubstituted Î2-Aminoesters and Î2-Lactams. Journal of Organic Chemistry, 2001, 66, 9030-9032.	3.2	39

LUISA CARRILLO

#	Article	IF	CITATIONS
91	Asymmetric Synthesis of β-Substituted α-Methyl-β-amino Esters by Mannich Reaction of (S,S)-(+)-Pseudoephedrine Acetamide Derived Enolate with Imines. Organic Letters, 2001, 3, 773-776.	4.6	43
92	Asymmetric Synthesis of Arylglycines and Their Use as Chiral Templates for the Stereocontrolled Synthesis of 7,8-Disubstituted 3-Aryl-1,2,3,4-tetrahydroisoquinolin-4-ols. European Journal of Organic Chemistry, 2001, 2001, 4343.	2.4	32
93	The first stereocontrolled synthesis of isoflavanones. Tetrahedron Letters, 2000, 41, 8297-8300.	1.4	19
94	Stereocontrolled synthesis of 2-aryl tetralones. Application in the synthesis of B/C hexahydrobenzo[c]phenanthridine alkaloids. Tetrahedron: Asymmetry, 2000, 11, 1227-1237.	1.8	23
95	Stereocontrolled metalloenamine alkylations: application to the asymmetric synthesis of 4-alkyl-1,2,3,4-tetrahydroisoquinolines. Tetrahedron: Asymmetry, 2000, 11, 3779-3788.	1.8	5
96	Asymmetric Aldol Reactions Using (S,S)-(+)-Pseudoephedrine-Based Amides:  Stereoselective Synthesis of α-Methyl-β-hydroxy Acids, Esters, Ketones, and 1,3-Syn and 1,3-Anti Diols. Journal of Organic Chemistry, 2000, 65, 3754-3760.	3.2	51
97	An efficient synthesis of phenanthro-fused thiazoles by a non-phenolic oxidative coupling procedure of 4,5-diarylthiazoles. Tetrahedron Letters, 1999, 40, 5067-5070.	1.4	18
98	Asymmetric synthesis of arylglycine amino acids using (S,S)-(+)-pseudoephedrine derived amides. Tetrahedron Letters, 1999, 40, 7123-7126.	1.4	16
99	The first stereocontrolled synthesis of 12-methyl-hexahydrobenzo[c]phenanthridine alkaloids. Tetrahedron: Asymmetry, 1999, 10, 1947-1959.	1.8	16
100	A New General Method for the Asymmetric Synthesis of 4-Alkyl-3-aryl-1,2,3,4-tetrahydroisoquinolines. Journal of Organic Chemistry, 1999, 64, 4610-4616.	3.2	42
101	Chiral Amino Alcohols As Intermediates in the Stereocontrolled Synthesis of 1,3-Disubstituted Tetrahydroisoquinolines and Protoberberines. Journal of Organic Chemistry, 1999, 64, 1115-1120.	3.2	36
102	A valuable route to benzopyrane[4,3-c]isoquinolines. Tetrahedron, 1998, 54, 233-242.	1.9	5
103	Asymmetric aldol reactions with (+)-(S,S)-pseudoephedrine. Stereoselective synthesis of α-methyl β-hydroxy esters. Tetrahedron Letters, 1998, 39, 9267-9270.	1.4	10
104	A contribution to the asymmetric synthesis of isoquinolines: Concise stereoselective approach to (3S,4S)-6,7-dimethoxy-4-hydroxy-3-phenyl-1,2,3,4-tetrahydroisoquinoline. Tetrahedron: Asymmetry, 1998, 9, 151-155.	1.8	14
105	Stereochemical studies on the synthesis of 1,2,3,4-tetrahydroisoquinolin-4-ols. Tetrahedron: Asymmetry, 1998, 9, 1809-1816.	1.8	9
106	3-Aryl-4-Isoquinolinone Derivatives An Efficient Oxidative Preparation. Synthetic Communications, 1997, 27, 1643-1652.	2.1	2
107	A Simple and Efficient Synthetic Route to Chiral Isopavines. Synthesis of (â^')-O-Methylthalisopavine and (â^')-Amurensinine. Journal of Organic Chemistry, 1997, 62, 6716-6721.	3.2	39
108	A Convenient Access to Protoberberine Derivatives. Heterocycles, 1996, 43, 2099.	0.7	3

#	Article	IF	CITATIONS
109	A New Route towards 8-Oxoprotoberberines. Heterocycles, 1993, 36, 2067.	0.7	9
110	On the preparation and structural determination of 3-arylisoquinolinones. Tetrahedron, 1991, 47, 9253-9258.	1.9	20
111	2-Nitromethylacrylates as Useful Dinucleophiles for the Enantioselective Organocatalytic Michael/Henry Cascade Reaction .,0,,.		0
112	Enantioselective Synthesis of Chiral Proline Derivatives. , 0, , .		0
113	Favouring Trienamine Activation through Unconjugated Dienals. , 0, , .		0
114	The Role of Pyranones in Asymmetric Organocatalytic Cascade Reactions . , 0, , .		0
115	2021. Kimikako Nobel Saria Natura Imitatzeagatik. Biomimetikaren Eragina Organokatalisiaren Garapenean. Ekaia (journal), 0, , .	0.0	0