Silvina M Gatica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9987/publications.pdf

Version: 2024-02-01

687363 477307 36 844 13 29 citations h-index g-index papers 37 37 37 588 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selective adsorption of carbon dioxide from mixed vapors by blockage of methane in graphene nanoribbons. SN Applied Sciences, 2020, 2, 1 .	2.9	3
2	Monolayer adsorption of noble gases on graphene. Chemical Physics, 2018, 501, 46-52.	1.9	18
3	Adsorption and Gas Separation of Molecules by Carbon Nanohorns. Molecules, 2016, 21, 662.	3.8	10
4	Commensurate Phases of Kr Adsorbed on Single-Walled Carbon Nanotubes. Journal of Low Temperature Physics, 2016, 185, 129-137.	1.4	4
5	REU in Physics at Howard University. Materials Research Society Symposia Proceedings, 2015, 1762, 15.	0.1	O
6	Contribution of Chirality to the Adsorption of a Kr Atom on a Single Wall Carbon Nanotube. Journal of Low Temperature Physics, 2014, 175, 590-603.	1.4	6
7	Simulations of Adsorption of CO2 and CH4 in MOFs: Effect of the Size and Charge Distribution on the Selectivity. Journal of Low Temperature Physics, 2013, 172, 274-288.	1.4	9
8	Gas Adsorption in Novel Environments, Including Effects of Pore Relaxation. Journal of Physics: Conference Series, 2012, 400, 012005.	0.4	0
9	Gas Adsorption in Novel Environments, Including Effects of Pore Relaxation. Journal of Low Temperature Physics, 2012, 166, 231-241.	1.4	3
10	Phase Behavior of Ar and Kr Films on Carbon Nanotubes. Journal of Physical Chemistry A, 2011, 115, 7249-7257.	2.5	16
11	New Physics of Gases Adsorbed on or Near Fullerenes. Journal of Low Temperature Physics, 2011, 162, 573-582.	1.4	3
12	QUASI-ONE DIMENSIONAL FLUIDS THAT EXHIBIT HIGHER DIMENSIONAL BEHAVIOR. , 2011, , .		0
13	Solid Phase of Krypton on the Exterior of Individual Single-Walled Carbon Nanotubes. Journal of Low Temperature Physics, 2010, 161, 367-374.	1.4	2
14	QUASI-ONE DIMENSIONAL FLUIDS THAT EXHIBIT HIGHER DIMENSIONAL BEHAVIOR. International Journal of Modern Physics B, 2010, 24, 5051-5059.	2.0	3
15	Adsorption Near Fullerenes: Novel Effects of Weak Interactions. , 2009, , .		O
16	Effects of Substrate Relaxation on Adsorption in Pores. Journal of Low Temperature Physics, 2009, 156, 1-8.	1.4	18
17	To Wet or Not to Wet: That Is the Question. Journal of Low Temperature Physics, 2009, 157, 111-136.	1.4	35
18	Condensation of Fluids Confined in Non-rigid Nanopores: With a Little Help from the Substrate. Journal of Low Temperature Physics, 2009, 157, 382-394.	1.4	8

#	Article	IF	CITATIONS
19	Adsorbed Gases in Bundles of Carbon Nanotubes. , 2008, , 187-210.		10
20	Ordering transition of gases adsorbed on aC60surface: Monte Carlo simulations and lattice-gas models. Physical Review B, 2008, 78, .	3.2	8
21	A corresponding states principle for physisorption and deviations for quantum fluids. Molecular Physics, 2008, 106, 1579-1585.	1.7	14
22	Interaction Thresholds for Adsorption of Quantum Gases on Surfaces and within Pores of Various Shapesâ€. Journal of Physical Chemistry A, 2007, 111, 12439-12446.	2.5	6
23	display="inline"> <mml:mmultiscripts><mml:mi mathvariant="normal">He</mml:mi><mml:mprescripts /><mml:none></mml:none><mml:mn>4</mml:mn></mml:mprescripts </mml:mmultiscripts> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi mathvariant="normal">H<mml:mn>2</mml:mn></mml:mi </mml:msub>gases adsorbed on</mml:math 	3.2	3
24	carbon nanotubes. Physical Review B, 2007, 76, . From one to infinity: effective dimensionalities of fluids in nanoporous materials. Journal of Low Temperature Physics, 2005, 138, 201-210.	1.4	3
25	Dimensional-Crossover of 3He Gas Formed in One-Dimensional Nanometer Tunnel. Journal of Low Temperature Physics, 2005, 138, 211-216.	1.4	11
26	Thermodynamic properties and correlation functions of Ar films on the surface of a bundle of nanotubes. Physical Review B, 2005, 71 , .	3.2	10
27	Capillary condensation in cylindrical nanopores. Physical Review E, 2005, 72, 041602.	2.1	22
28	Designing van der Waals Forces between Nanocolloids. Nano Letters, 2005, 5, 169-173.	9.1	40
29	Intriguing Examples of Inhomogeneous Broadening. Israel Journal of Chemistry, 2004, 44, 229-234.	2.3	1
30	Three-body interactions involving clusters and films. Physical Review B, 2003, 68, .	3.2	13
31	Statistical mechanics of interacting peapods. Physical Review B, 2003, 67, .	3.2	20
32	Condensed phases of gases inside nanotube bundles. Reviews of Modern Physics, 2001, 73, 857-865.	45.6	194
33	Phases of neon, xenon, and methane adsorbed on nanotube bundles. Journal of Chemical Physics, 2001, 115, 9975-9981.	3.0	81
34	Structure and stability of superfluid4Hesystems with cylindrical symmetry. Physical Review B, 2001, 64,	3.2	8
35	Uptake of gases in bundles of carbon nanotubes. Physical Review B, 2000, 62, 2173-2180.	3.2	243
36	Capillary condensation transitions in a slab geometry. Physical Review E, 1999, 59, 4484-4489.	2.1	19