Huayu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9986519/publications.pdf

Version: 2024-02-01

758635 1058022 1,699 14 12 14 h-index citations g-index papers 14 14 14 683 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 7536-7562.	3.2	293
2	Recent advances in cellulose and its derivatives for oilfield applications. Carbohydrate Polymers, 2021, 259, 117740.	5.1	229
3	Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocelluloseâ€Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor. Advanced Functional Materials, 2022, 32, .	7.8	199
4	Cellulose based composite foams and aerogels for advanced energy storage devices. Chemical Engineering Journal, 2021, 426, 130817.	6.6	170
5	Lignin-containing cellulose nanomaterials: preparation and applications. Green Chemistry, 2021, 23, 9723-9746.	4.6	159
6	Lignin-based electrodes for energy storage application. Industrial Crops and Products, 2021, 165, 113425.	2.5	157
7	Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Advanced Composites and Hybrid Materials, 2022, 5, 1168-1179.	9.9	100
8	Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydrate Polymers, 2021, 267, 118220.	5.1	99
9	Highly Efficient and Sustainable Preparation of Carboxylic and Thermostable Cellulose Nanocrystals via FeCl ₃ -Catalyzed Innocuous Citric Acid Hydrolysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 16691-16700.	3.2	96
10	Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydrate Polymers, 2021, 266, 118107.	5.1	86
11	Cellulose Nanomaterials for Oil Exploration Applications. Polymer Reviews, 2022, 62, 585-625.	5.3	63
12	An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. Journal of Cleaner Production, 2021, 313, 127834.	4.6	43
13	Progress in Prevention, Diagnosis, and Treatment of Periprosthetic Joint Infection. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-7.	0.5	4
14	Secondary Metabolites from Stem Barks of Catalpa bungei. Chemistry of Natural Compounds, 2021, 57, 1111-1113.	0.2	1