Saiyong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9985657/publications.pdf Version: 2024-02-01

SALVONC 7HU

#	Article	IF	CITATIONS
1	Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins. Cell Stem Cell, 2009, 4, 381-384.	11.1	1,652
2	Construction of a human cell landscape at single-cell level. Nature, 2020, 581, 303-309.	27.8	695
3	Reprogramming of Human Primary Somatic Cells by OCT4 and Chemical Compounds. Cell Stem Cell, 2010, 7, 651-655.	11.1	602
4	Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7838-7843.	7.1	555
5	Generation of Rat and Human Induced Pluripotent Stem Cells by Combining Genetic Reprogramming and Chemical Inhibitors. Cell Stem Cell, 2009, 4, 16-19.	11.1	520
6	Direct Reprogramming of Adult Human Fibroblasts to Functional Neurons under Defined Conditions. Cell Stem Cell, 2011, 9, 113-118.	11.1	460
7	Generation of Human-Induced Pluripotent Stem Cells in the Absence of Exogenous <i>Sox2</i> . Stem Cells, 2009, 27, 2992-3000.	3.2	297
8	Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature, 2017, 548, 228-233.	27.8	252
9	Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature, 2014, 508, 93-97.	27.8	232
10	Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation. Cell Stem Cell, 2016, 18, 653-667.	11.1	162
11	Brief Report: Combined Chemical Treatment Enables <i>Oct4</i> -Induced Reprogramming from Mouse Embryonic Fibroblasts. Stem Cells, 2011, 29, 549-553.	3.2	121
12	Human pancreatic beta-like cells converted from fibroblasts. Nature Communications, 2016, 7, 10080.	12.8	119
13	Small Molecules Facilitate the Reprogramming of Mouse Fibroblasts into Pancreatic Lineages. Cell Stem Cell, 2014, 14, 228-236.	11.1	116
14	Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Cell Research, 2014, 24, 126-129.	12.0	110
15	Conversion of Mouse Epiblast Stem Cells to an Earlier Pluripotency State by Small Molecules. Journal of Biological Chemistry, 2010, 285, 29676-29680.	3.4	107
16	Generation of Retinal Pigment Epithelial Cells from Small Molecules and <i>OCT4</i> Reprogrammed Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2012, 1, 96-109.	3.3	83
17	Reprogramming cell fates by small molecules. Protein and Cell, 2017, 8, 328-348.	11.0	82
18	Chemical Strategies for Stem Cell Biology and Regenerative Medicine. Annual Review of Biomedical Engineering, 2011, 13, 73-90.	12.3	61

SAIYONG ZHU

#	Article	IF	CITATIONS
19	Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nature Communications, 2018, 9, 1303.	12.8	52
20	Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nature Protocols, 2015, 10, 959-973.	12.0	46
21	Human expandable pancreatic progenitor–derived β cells ameliorate diabetes. Science Advances, 2022, 8, eabk1826.	10.3	24
22	Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. Journal of Molecular Cell Biology, 2019, 11, 489-495.	3.3	18
23	Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration. Acta Biochimica Et Biophysica Sinica, 2017, 49, 289-301.	2.0	16
24	Inhibition of Syk promotes chemical reprogramming of fibroblasts via metabolic rewiring and H ₂ S production. EMBO Journal, 2021, 40, e106771.	7.8	15
25	N6-methyladenosine modification-mediated mRNA metabolism is essential for human pancreatic lineage specification and islet organogenesis. Nature Communications, 2022, 13, .	12.8	7
26	Recent advances and potential applications of human pluripotent stem cell-derived pancreatic β cells. Acta Biochimica Et Biophysica Sinica, 2020, 52, 708-715.	2.0	6