Chen Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/998519/publications.pdf Version: 2024-02-01

CHENLIA

#	Article	IF	CITATIONS
1	Isolated Diatomic Niâ€Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 6972-6976.	13.8	707
2	Sulfurâ€Dopantâ€Promoted Electroreduction of CO ₂ over Coordinatively Unsaturated Niâ€N ₂ Moieties. Angewandte Chemie - International Edition, 2021, 60, 23342-23348.	13.8	98
3	Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 21493-21498.	13.8	97
4	Nitrogen Vacancy Induced Coordinative Reconstruction of Singleâ€Atom Ni Catalyst for Efficient Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2021, 31, 2107072.	14.9	89
5	Carbon-based catalysts for electrochemical CO ₂ reduction. Sustainable Energy and Fuels, 2019, 3, 2890-2906.	4.9	67
6	Isolated Diatomic Niâ€Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO ₂ . Angewandte Chemie, 2019, 131, 7046-7050.	2.0	65
7	Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energyâ€Efficient CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	57
8	Confinement of Ionic Liquids at Single-Ni-Sites Boost Electroreduction of CO ₂ in Aqueous Electrolytes. ACS Catalysis, 2020, 10, 13171-13178.	11.2	54
9	Design of Electrocatalysts and Electrochemical Cells for Carbon Dioxide Reduction Reactions. Advanced Materials Technologies, 2018, 3, 1700377.	5.8	53
10	(N, B) Dual Heteroatom-Doped Hierarchical Porous Carbon Framework for Efficient Electroreduction of Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 6003-6010.	6.7	45
11	Defective Indium/Indium Oxide Heterostructures for Highly Selective Carbon Dioxide Electrocatalysis. Inorganic Chemistry, 2020, 59, 12437-12444.	4.0	40
12	Nanostructured amalgams with tuneable silver–mercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide. Journal of Materials Chemistry A, 2019, 7, 15907-15912.	10.3	37
13	Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2020, 132, 21677-21682.	2.0	37
14	Single atom-based catalysts for electrochemical CO2 reduction. Chinese Journal of Catalysis, 2022, 43, 1547-1597.	14.0	37
15	"Waterâ€inâ€Sugar―Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage. Small, 2021, 17, e2102375.	10.0	33
16	Polydiacetylene vesicles for hydrogen peroxide detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 488-491.	4.7	28
17	Hydrogenâ€Bond Disrupting Electrolytes for Fast and Stable Proton Batteries. Small, 2022, 18, e2201449.	10.0	26
18	Vitamin B ₁₂ on Graphene for Highly Efficient CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2020, 12, 41288-41293.	8.0	22

Chen Jia

#	Article	IF	CITATIONS
19	Vanadium-induced fragmentation of crystalline CoFe hydr(oxy)oxide electrocatalysts for enhanced oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 35230-35238.	7.1	22
20	Cobalt oxide micro flowers derived from hydrothermal synthesised cobalt sulphide pre-catalyst for enhanced water oxidation. Electrochimica Acta, 2020, 355, 136802.	5.2	18
21	Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction. Current Opinion in Electrochemistry, 2022, 31, 100854.	4.8	13
22	Enhanced Sensitivity for Hydrogen Peroxide Detection: Polydiacetylene Vesicles with Phenylboronic Acid Head Group. Journal of Fluorescence, 2016, 26, 121-127.	2.5	11
23	Ruthenium Complexes in Homogeneous and Heterogeneous Catalysis for Electroreduction of CO ₂ . ChemCatChem, 2020, 12, 1292-1296.	3.7	9
24	Sulfurâ€Dopantâ€Promoted Electroreduction of CO 2 over Coordinatively Unsaturated Niâ€N 2 Moieties. Angewandte Chemie, 0, , .	2.0	9
25	Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energyâ€Efficient CO ₂ Electroreduction. Angewandte Chemie, 2022, 134, .	2.0	9
26	The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO2. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100651.	5.9	4
27	In-plane sulfur vacancy of MoS2 enabling efficient CO2 hydrogenation to methanol at low temperature. Science China Chemistry, 2021, 64, 684-685.	8.2	1