Robert G Dambergs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9984223/publications.pdf

Version: 2024-02-01

331670 434195 34 1,592 21 31 citations h-index g-index papers 36 36 36 1484 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fungal contaminants in the vineyard and wine quality and safety. , 2022, , 587-623.		1
2	Predicting grapevine canopy nitrogen status using proximal sensors and nearâ€infrared reflectance spectroscopy. Journal of Plant Nutrition and Soil Science, 2021, 184, 204-304.	1.9	6
3	A feasibility study on monitoring total phenolic content in sparkling wine press juice fractions using a new in-line system and predictive models. Food Control, 2021, 123, 106810.	5.5	4
4	Focus on the role of seed tannins and pectolytic enzymes in the color development of Pinot noir wine. Current Research in Food Science, 2021, 4, 405-413.	5.8	1
5	Grape skins as supplements for color development in Pinot noir wine. Food Research International, 2020, 133, 108707.	6.2	5
6	A Comparison of Laboratory Analysis Methods for Total Phenolic Content of Cider. Beverages, 2020, 6, 55.	2.8	17
7	Viticultural and Controlled Phenolic Release Treatments Affect Phenolic Concentration and Tannin Composition in Pinot noir Wine. American Journal of Enology and Viticulture, 2020, 71, 256-265.	1.7	5
8	Prediction of starch reserves in intact and ground grapevine cane wood tissues using nearâ€infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture, 2020, 100, 2418-2424.	3.5	4
9	Phenolic Content of Apple Juice for Cider Making as Influenced by Common Pre-Fermentation Processes Using Two Analytical Methods. Beverages, 2019, 5, 53.	2.8	10
10	Apple variety and maturity profiling of base ciders using UV spectroscopy. Food Chemistry, 2017, 228, 323-329.	8.2	18
11	Interactions of Grape Skin, Seed, and Pulp on Tannin and Anthocyanin Extraction in Pinot noir Wines. American Journal of Enology and Viticulture, 2015, 66, 472-481.	1.7	28
12	Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine. Food Chemistry, 2015, 173, 424-431.	8.2	127
13	Microwave Maceration with Early Pressing Improves Phenolics and Fermentation Kinetics in Pinot noir. American Journal of Enology and Viticulture, 2014, 65, 401-406.	1.7	24
14	Microwave Maceration of Pinot Noir Grape Must: Sanitation and Extraction Effects and Wine Phenolics Outcomes. Food and Bioprocess Technology, 2014, 7, 954-963.	4.7	51
15	Pinot Noir wine composition from different vine vigour zones classified by remote imaging technology. Food Chemistry, 2014, 153, 52-59.	8.2	33
16	Yeast Effects on Pinot noir Wine Phenolics, Color, and Tannin Composition. Journal of Agricultural and Food Chemistry, 2013, 61, 9892-9898.	5.2	65
17	Rapid Measurement of Methyl Cellulose Precipitable Tannins Using Ultraviolet Spectroscopy with Chemometrics: Application to Red Wine and Inter-Laboratory Calibration Transfer. Applied Spectroscopy, 2012, 66, 656-664.	2.2	52
18	Phenolic Compositions of 50 and 30 Year Sequences of Australian Red Wines: The Impact of Wine Age. Journal of Agricultural and Food Chemistry, 2012, 60, 10093-10102.	5.2	62

#	Article	IF	CITATIONS
19	Relationship between Red Wine Grades and Phenolics. 1. Tannin and Total Phenolics Concentrations. Journal of Agricultural and Food Chemistry, 2010, 58, 12313-12319.	5.2	86
20	Mid infrared spectroscopy and multivariate analysis: A tool to discriminate between organic and non-organic wines grown in Australia. Food Chemistry, 2009, 116, 761-765.	8.2	95
21	Wine and Beer., 2009, , 377-397.		1
22	The effect of sample storage and homogenisation techniques on the chemical composition and near infrared spectra of white grapes. Food Research International, 2009, 42, 653-658.	6.2	26
23	Use of direct headspace-mass spectrometry coupled with chemometrics to predict aroma properties in Australian Riesling wine. Analytica Chimica Acta, 2008, 621, 2-7.	5.4	33
24	Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis. Analytica Chimica Acta, 2008, 621, 19-23.	5.4	82
25	Measurement of Condensed Tannins and Dry Matter in Red Grape Homogenates Using Near Infrared Spectroscopy and Partial Least Squares. Journal of Agricultural and Food Chemistry, 2008, 56, 7631-7636.	5.2	84
26	High Throughput Analysis of Red Wine and Grape PhenolicsAdaptation and Validation of Methyl Cellulose Precipitable Tannin Assay and Modified Somers Color Assay to a Rapid 96 Well Plate Format. Journal of Agricultural and Food Chemistry, 2007, 55, 4651-4657.	5.2	246
27	Feasibility study on the use of a head space mass spectrometry electronic nose (MS e_nose) to monitor red wine spoilage induced by Brettanomyces yeast. Sensors and Actuators B: Chemical, 2007, 124, 167-171.	7.8	56
28	Monitoring Red Wine Fermentation in Australia: A Novel Application of Visible and near Infrared Spectroscopy. NIR News, 2007, 18, 7-9.	0.3	0
29	Combining mass spectrometry based electronic nose, visible–near infrared spectroscopy and chemometrics to assess the sensory properties of Australian Riesling wines. Analytica Chimica Acta, 2006, 563, 319-324.	5.4	65
30	Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale. Biotechnology and Bioengineering, 2006, 95, 1101-1107.	3.3	94
31	Relationship between sensory analysis and near infrared spectroscopy in Australian Riesling and Chardonnay wines. Analytica Chimica Acta, 2005, 539, 341-348.	5.4	53
32	Usefulness of chemometrics and mass spectrometry-based electronic nose to classify Australian white wines by their varietal origin. Talanta, 2005, 68, 382-387.	5.5	70
33	Rapid Analysis of Methanol in Grape-Derived Distillation Products Using Near-Infrared Transmission Spectroscopy. Journal of Agricultural and Food Chemistry, 2002, 50, 3079-3084.	5. 2	82
34	Analysis of Beverages and Brewing Products. Agronomy, 0, , 465-485.	0.2	3