
Konstantin Laun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9983930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the formation of bulk- and surface-active layered (oxy)hydroxides for water oxidation starting from a cobalt selenite precursor. Energy and Environmental Science, 2020, 13, 3607-3619.	30.8	77
2	Protonation/reduction dynamics at the [4Fe–4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Physical Chemistry Chemical Physics, 2018, 20, 3128-3140.	2.8	76
3	Protonâ€Coupled Reduction of the Catalytic [4Feâ€4S] Cluster in [FeFe]â€Hydrogenases. Angewandte Chemie - International Edition, 2017, 56, 16503-16506.	13.8	56
4	How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer. Journal of the American Chemical Society, 2019, 141, 17394-17403.	13.7	38
5	Two ligand-binding sites in CO-reducing V nitrogenase reveal a general mechanistic principle. Science Advances, 2021, 7, .	10.3	33
6	Geometry of the Catalytic Active Site in [FeFe]-Hydrogenase Is Determined by Hydrogen Bonding and Proton Transfer. ACS Catalysis, 2019, 9, 9140-9149.	11.2	30
7	A soft molecular 2Fe–2As precursor approach to the synthesis of nanostructured FeAs for efficient electrocatalytic water oxidation. Chemical Science, 2020, 11, 11834-11842.	7.4	30
8	Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase. Dalton Transactions, 2021, 50, 3641-3650.	3.3	13
9	An Intermetallic CaFe ₆ Ge ₆ Approach to Unprecedented Caâ^'Feâ^'O Electrocatalyst for Efficient Alkaline Oxygen Evolution Reaction. ChemCatChem, 2022, 14, .	3.7	10
10	Spectroscopical Investigations on the Redox Chemistry of [FeFe]-Hydrogenases in the Presence of Carbon Monoxide. Molecules, 2018, 23, 1669.	3.8	9
11	Infrared Characterization of the Bidirectional Oxygen-Sensitive [NiFe]-Hydrogenase from E. coli.	3.5	6