
Seth T Walk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9983677/publications.pdf Version: 2024-02-01

Seth Τ \λ/λικ

#	Article	IF	CITATIONS
1	Regulation of Glucose Insulinotropic Peptide and Intestinal Glucose Transporters in the Diet-Induced Obese Mouse. Journal of Diabetes Research, 2022, 2022, 1-8.	2.3	2
2	The Cortical Bone Metabolome of <scp>C57BL</scp> / <scp>6J</scp> Mice Is Sexually Dimorphic. JBMR Plus, 2022, 6, .	2.7	6
3	Human Colon Cancer–Derived <i>Clostridioides difficile</i> Strains Drive Colonic Tumorigenesis in Mice. Cancer Discovery, 2022, 12, 1873-1885.	9.4	38
4	Dynamic Gut Microbiome Changes in Response to Low-Iron Challenge. Applied and Environmental Microbiology, 2021, 87, .	3.1	16
5	Integrated Metabolomics and Targeted Gene Transcription Analysis Reveal Global Bacterial Antimonite Resistance Mechanisms. Frontiers in Microbiology, 2021, 12, 617050.	3.5	7
6	A Single Microbiome Gene Alters Murine Susceptibility to Acute Arsenic Exposure. Toxicological Sciences, 2021, 181, 105-114.	3.1	5
7	Introducing the ArsR-Regulated Arsenic Stimulon. Frontiers in Microbiology, 2021, 12, 630562.	3.5	28
8	Loss of interleukinâ€10 receptor disrupts intestinal epithelial cell proliferation and skews differentiation towards the goblet cell fate. FASEB Journal, 2021, 35, e21551.	0.5	3
9	Antibiotic perturbation of the murine gut microbiome introduces inter-individual susceptibility to arsenic. Toxicology, 2021, 456, 152798.	4.2	3
10	Temporal metabolic response yields a dynamic biosignature of inflammation. IScience, 2021, 24, 102817.	4.1	4
11	A Synthetic Hydrogel, VitroGel® ORGANOID-3, Improves Immune Cell-Epithelial Interactions in a Tissue Chip Co-Culture Model of Human Gastric Organoids and Dendritic Cells. Frontiers in Pharmacology, 2021, 12, 707891.	3.5	23
12	Determinants of the postprandial triglyceride response to a high-fat meal in healthy overweight and obese adults. Lipids in Health and Disease, 2021, 20, 107.	3.0	7
13	<i>Escherichia coli</i> Residency in the Gut of Healthy Human Adults. EcoSal Plus, 2020, 9, .	5.4	58
14	Detection and elimination of a novel non-toxigenic Clostridioides difficile strain from the microbiota of a mouse colony. Gut Microbes, 2020, 12, 1851999.	9.8	4
15	PCR ribotypes of <i>Clostridioides difficile</i> across Texas from 2011 to 2018 including emergence of ribotype 255. Emerging Microbes and Infections, 2020, 9, 341-347.	6.5	21
16	Rethinking gut microbiome residency and the <i>Enterobacteriaceae</i> in healthy human adults. ISME Journal, 2019, 13, 2306-2318.	9.8	97
17	Epidemic Clostridioides difficile Ribotype 027 Lineages: Comparisons of Texas Versus Worldwide Strains. Open Forum Infectious Diseases, 2019, 6, ofz013.	0.9	14
18	The Human Gut Microbiome's Influence on Arsenic Toxicity. Current Pharmacology Reports, 2019, 5, 491-504.	3.0	32

#	Article	IF	CITATIONS
19	Long-term flow through human intestinal organoids with the gut organoid flow chip (GOFlowChip). Lab on A Chip, 2019, 19, 3552-3562.	6.0	57
20	Redox metabolism of ingested arsenic: Integrated activities of microbiome and host on toxicological outcomes. Current Opinion in Toxicology, 2019, 13, 90-98.	5.0	11
21	Microbiota-Derived Indole Metabolites Promote Human and Murine Intestinal Homeostasis through Regulation of Interleukin-10 Receptor. American Journal of Pathology, 2018, 188, 1183-1194.	3.8	301
22	A repeat offender: Recurrent extraintestinal Clostridium difficile infection following fecal microbiota transplantation. Anaerobe, 2018, 51, 68-72.	2.1	7
23	Risk Factors for Clostridium difficile Isolation in Inflammatory Bowel Disease: A Prospective Study. Digestive Diseases and Sciences, 2018, 63, 1016-1024.	2.3	10
24	Antimicrobial susceptibility and ribotypes of Clostridium difficile isolates from a Phase 2 clinical trial of ridinilazole (SMT19969) and vancomycin. Journal of Antimicrobial Chemotherapy, 2018, 73, 2078-2084.	3.0	15
25	The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nature Communications, 2018, 9, 5424.	12.8	143
26	Physical Activity and Glycemic Control in Low Versus High Inflammation Phenotypes in Metabolically Healthy Adults. Medicine and Science in Sports and Exercise, 2018, 50, 220.	0.4	0
27	Clostridium difficile shows no trade-off between toxin and spore production within the human host. Journal of Medical Microbiology, 2018, 67, 631-640.	1.8	8
28	Increase In Beta-hydroxybutyrate After High-fat Meal In Metabolically Healthy Overweight/obese Adults. Medicine and Science in Sports and Exercise, 2018, 50, 216-217.	0.4	0
29	Community Environmental Contamination of Toxigenic Clostridium difficile. Open Forum Infectious Diseases, 2017, 4, ofx018.	0.9	44
30	Epidemiologic Trends in Clostridium difficile Isolate Ribotypes in United States from 2010 to 2014. Open Forum Infectious Diseases, 2017, 4, S391-S391.	0.9	4
31	Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. ELife, 2017, 6, .	6.0	132
32	An in silico evaluation of treatment regimens for recurrent Clostridium difficile infection. PLoS ONE, 2017, 12, e0182815.	2.5	0
33	Healthy human gut phageome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10400-10405.	7.1	439
34	Healing of Human Intestinal Organoids. Biophysical Journal, 2016, 110, 171a.	0.5	0
35	In the Endemic Setting, <i>Clostridium difficile</i> Ribotype 027 Is Virulent But Not Hypervirulent. Infection Control and Hospital Epidemiology, 2015, 36, 1318-1323.	1.8	38
36	Serum 25-hydroxyvitamin D levels are not associated with adverse outcomes in Clostridium difficile infection. Gastroenterology Insights, 2015, 7, 5979.	1.2	3

#	Article	IF	CITATIONS
37	Vaginal biogenic amines: biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis?. Frontiers in Physiology, 2015, 6, 253.	2.8	114
38	Evaluation of Portability and Cost of a Fluorescent PCR Ribotyping Protocol for Clostridium difficile Epidemiology. Journal of Clinical Microbiology, 2015, 53, 1192-1197.	3.9	46
39	<i>Clostridium difficile</i> Ribotype 027: Relationship to Age, Detectability of Toxins A or B in Stool With Rapid Testing, Severe Infection, and Mortality. Clinical Infectious Diseases, 2015, 61, 233-241.	5.8	124
40	Gender Differences in Non-Toxigenic Colonization and Risk of Subsequent. , 2015, 2, .		3
41	Candidate mediators of chondrocyte mechanotransduction via targeted and untargeted metabolomic measurements. Archives of Biochemistry and Biophysics, 2014, 545, 116-123.	3.0	31
42	Investigation of potentially pathogenic Clostridium difficile contamination in household environs. Anaerobe, 2014, 27, 31-33.	2.1	50
43	The Systemic Inflammatory Response to Clostridium difficile Infection. PLoS ONE, 2014, 9, e92578.	2.5	60
44	The relationship between phenotype, ribotype, and clinical disease in human Clostridium difficile isolates. Anaerobe, 2013, 24, 109-116.	2.1	74
45	A clinical and epidemiological review of non-toxigenic Clostridium difficile. Anaerobe, 2013, 22, 1-5.	2.1	64
46	Detection of Mixed Populations ofClostridium difficilefrom Symptomatic Patients Using Capillary-Based Polymerase Chain Reaction Ribotyping. Infection Control and Hospital Epidemiology, 2013, 34, 961-966.	1.8	31
47	Reply to Walker et al. Clinical Infectious Diseases, 2013, 56, 1846-1847.	5.8	1
48	Emergence of carbapenemase-producing Klebsiella pneumoniae of sequence type 258 in Michigan, USA. Gastroenterology Insights, 2013, 5, 5.	1.2	15
49	Clostridium difficile Ribotype Diversity at Six Health Care Institutions in the United States. Journal of Clinical Microbiology, 2013, 51, 1938-1941.	3.9	41
50	Reply to McDonald. Clinical Infectious Diseases, 2013, 56, 907-908.	5.8	1
51	Understanding Increased Mortality in Clostridium difficile-Infected Older Adults. Clinical Infectious Diseases, 2013, 57, 625-626.	5.8	5
52	The Nose Knows Not: Poor Predictive Value of Stool Sample Odor for Detection of Clostridium difficile. Clinical Infectious Diseases, 2013, 56, 615-616.	5.8	7
53	Emergence of a Novel Extended-Spectrum-β-Lactamase (ESBL)-Producing, Fluoroquinolone-Resistant Clone of Extraintestinal Pathogenic Escherichia coli in Kumasi, Ghana. Journal of Clinical Microbiology, 2013, 51, 728-730.	3.9	30
54	Procalcitonin Levels Associate with Severity of Clostridium difficile Infection. PLoS ONE, 2013, 8, e58265.	2.5	37

#	Article	IF	CITATIONS
55	Escherichia coli Isolates That Carry <i>vat</i> , <i>fyuA</i> , <i>chuA</i> , and <i>yfcV</i> Efficiently Colonize the Urinary Tract. Infection and Immunity, 2012, 80, 4115-4122.	2.2	226
56	Clinical and Laboratory Features of Streptococcus salivarius Meningitis: A Case Report and Literature Review. Clinical Medicine and Research, 2012, 10, 15-25.	0.8	34
57	Clostridium difficile Ribotype Does Not Predict Severe Infection. Clinical Infectious Diseases, 2012, 55, 1661-1668.	5.8	172
58	Disruption of the Human Gut Microbiota following Norovirus Infection. PLoS ONE, 2012, 7, e48224.	2.5	109
59	Genome sequencing of environmental <i>Escherichia coli</i> expands understanding of the ecology and speciation of the model bacterial species. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7200-7205.	7.1	279
60	Characterization of the cryptic <i>Escherichia</i> lineages: rapid identification and prevalence. Environmental Microbiology, 2011, 13, 2468-2477.	3.8	103
61	Non-toxigenic Clostridium sordellii: Clinical and microbiological features of a case of cholangitis-associated bacteremia. Anaerobe, 2011, 17, 252-256.	2.1	16
62	A randomised trial of sheathed versus standard forceps for obtaining uncontaminated biopsy specimens of microbiota from the terminal ileum. Gut, 2011, 60, 1043-1049.	12.1	21
63	Fimbrial Profiles Predict Virulence of Uropathogenic Escherichia coli Strains: Contribution of Ygi and Yad Fimbriae. Infection and Immunity, 2011, 79, 4753-4763.	2.2	121
64	Biofilm Formation by and Thermal Niche and Virulence Characteristics of Escherichia spp. Applied and Environmental Microbiology, 2011, 77, 2695-2700.	3.1	51
65	Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflammatory Bowel Diseases, 2010, 16, 1841-1849.	1.9	276
66	<i>Escherichia albertii</i> in Wild and Domestic Birds. Emerging Infectious Diseases, 2010, 16, 638-646.	4.3	111
67	Pseudo-Outbreak ofClostridium sordelliiInfection following Probable Cross-Contamination in a Hospital Clinical Microbiology Laboratory. Infection Control and Hospital Epidemiology, 2010, 31, 640-642.	1.8	10
68	Correlation between Tick Density and Pathogen Endemicity, New Hampshire. Emerging Infectious Diseases, 2009, 15, 585-587.	4.3	37
69	Cryptic Lineages of the Genus <i>Escherichia</i> . Applied and Environmental Microbiology, 2009, 75, 6534-6544.	3.1	233
70	Emerging Insights into Antibiotic-Associated Diarrhea and <i>Clostridium difficile</i> Infection through the Lens of Microbial Ecology. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-7.	1.4	20
71	Influence of Antibiotic Selection on Genetic Composition of <i>Escherichia coli</i> Populations from Conventional and Organic Dairy Farms. Applied and Environmental Microbiology, 2007, 73, 5982-5989.	3.1	52
72	Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environmental Microbiology, 2007, 9, 2274-2288.	3.8	205

#	Article	IF	CITATIONS
73	Variation in Acid Resistance among Shiga Toxin-Producing Clones of Pathogenic Escherichia coli. Applied and Environmental Microbiology, 2005, 71, 2493-2500.	3.1	73
74	The Evolutionary Model of Escherichia coli O157:H7. , 0, , 225-239.		19
75	<i>Escherichia coli</i> O157:H7 in Reservoir Hosts. , 0, , 303-324.		1
76	Are Species Cohesive?-A View from Bacteriology. , 0, , 43-65.		13
77	The Niche of <i>Escherichia coli</i> ., 0, , 67-89.		10
78	Molecular Epidemiology and Population Genetics of Extraintestinal Pathogenic <i>Escherichia coli</i> ., 0, , 91-107.		1
79	Epidemiology of Argentinean Shiga Toxin-Producing Escherichia coli. , 0, , 109-132.		5
80	Evolutionary Emergence and Impact of Atypical <i>Escherichia coli</i> O157:H7 Strains. , 0, , 241-255.		0
81	Introduction: a Personal Homage to Tom Whittam. , 0, , 1-4.		0
82	Thomas Whittam, Shiga Toxin-Producing Escherichia coli, and the Clinical Consequences of Clonality. , 0, , 257-272.		0
83	Shiga Toxin-Producing <i>Escherichia coli</i> ., 0, , 199-223.		0
84	Gene Acquisition and Loss in the Phylogenetic Lineages of the Invasive Escherichia coli. , 0, , 133-156.		0
85	The Impact of Horizontal Genetic Exchange on Bacterial Population Structure: Insights from the Genera Neisseria and Campylobacter. , 0, , 15-30.		0
86	Population Geneticists Discover Bacteria and Their Genetic/Molecular Epidemiology. , 0, , 5-13.		0
87	Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H , 0, , 273-285.		0
88	The Genomics of Escherichia coli and Beyond. , 0, , 31-42.		0
89	Fitness Islands in Uropathogenic <i>Escherichia coli</i> ., 0,, 157-179.		Ο