Alice Mija

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/99836/publications.pdf

Version: 2024-02-01

230014 263392 2,257 68 27 45 citations h-index g-index papers 69 69 69 2238 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Sustainable Approach on Spruce Bark Waste Valorization through Hydrothermal Conversion. Processes, 2022, 10, 111.	1.3	3
2	High Glass Transition Materials from Sustainable Epoxy Resins with Potential Applications in the Aerospace and Space Sectors. ACS Applied Polymer Materials, 2022, 4, 3636-3646.	2.0	16
3	Physicoâ€Chemical Properties and Principal Component Analysis of Biobased Thermosets Developed with Different Batches of Industrial Humins. ChemPlusChem, 2022, 87, e202200067.	1.3	1
4	Humins as bio-based template for the synthesis of alumina foams. Molecular Catalysis, 2022, 526, 112363.	1.0	0
5	Fully bio-based reprocessable thermosetting resins based on epoxidized vegetable oils cured with itaconic acid. Industrial Crops and Products, 2022, 185, 115116.	2.5	26
6	Cover Feature: Physicoâ€Chemical Properties and Principal Component Analysis of Biobased Thermosets Developed with Different Batches of Industrial Humins (ChemPlusChem 7/2022). ChemPlusChem, 2022, 87, .	1.3	0
7	On the Influence of the cis/trans Stereochemistry of Limonene Oxides toward the Synthesis of Biobased Thermosets by Crosslinking with Anhydrides. ACS Sustainable Chemistry and Engineering, 2022, 10, 7169-7179.	3.2	3
8	Biobased furan-based epoxy/TiO2 nanocomposites for the preparation of coatings with improved chemical resistance. Chemical Engineering Journal, 2021, 406, 127107.	6.6	32
9	Limonene dioxide as a building block for 100% bio-based thermosets. Green Chemistry, 2021, 23, 9855-9859.	4.6	20
10	Influence of the Presence of Disulphide Bonds in Aromatic or Aliphatic Dicarboxylic Acid Hardeners Used to Produce Reprocessable Epoxidized Thermosets. Polymers, 2021, 13, 534.	2.0	12
11	Chemical and mechanical reprocessed resins and bio-composites based on five epoxidized vegetable oils thermosets reinforced with flax fibers or PLA woven. Composites Science and Technology, 2021, 205, 108678.	3.8	36
12	Reprocessable humins thermosets and composites. Composites Science and Technology, 2021, 207, 108655.	3.8	10
13	One-Pot Terpolymerization Synthesis of High Carbon Biocontent Recyclable Epoxy Thermosets and Their Composites with Flax Woven Fibers. ACS Sustainable Chemistry and Engineering, 2021, 9, 8526-8538.	3.2	14
14	Kinetical Study, Thermo-Mechanical Characteristics and Recyclability of Epoxidized Camelina Oil Cured with Antagonist Structure (Aliphatic/Aromatic) or Functionality (Acid/Amine) Hardeners. Polymers, 2021, 13, 2503.	2.0	13
15	Hydrothermal Carbon as Reactive Fillers to Produce Sustainable Biocomposites with Aromatic Bio-Based Epoxy Resins. Polymers, 2021, 13, 240.	2.0	12
16	Influence of Keratin on Epoxidized Linseed Oil Curing and Thermoset Performances. ACS Sustainable Chemistry and Engineering, 2021, 9, 15641-15652.	3.2	14
17	Vegetable Oil-Based Resins Reinforced with Spruce Bark Powder and with Its Hydrochar Lignocellulosic Biomass. Applied Sciences (Switzerland), 2021, 11, 10649.	1.3	10
18	Biorefinery Byproducts and Epoxy Biorenewable Monomers: A Structural Elucidation of Humins and Triglycidyl Ether of Phloroglucinol Cross-Linking. Biomacromolecules, 2020, 21, 517-533.	2.6	19

#	Article	IF	Citations
19	Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers, 2020, 12, 32.	2.0	66
20	Dual Cross-linking of Epoxidized Linseed Oil with Combined Aliphatic/Aromatic Diacids Containing Dynamic Sâ^'S Bonds Generating Recyclable Thermosets. ACS Applied Bio Materials, 2020, 3, 7550-7561.	2.3	20
21	Monitoring the structure–reactivity relationship in epoxidized perilla and safflower oil thermosetting resins. Polymer Chemistry, 2020, 11, 5088-5097.	1.9	20
22	Thermal and dynamic mechanical characterization of miscanthus stem fragments: Effects of genotypes, positions along the stem and their relation with biochemical and structural characteristics. Industrial Crops and Products, 2020, 156, 112863.	2.5	5
23	Structural Insights of Humins/Epoxidized Linseed Oil/ Hardener Terpolymerization. Polymers, 2020, 12, 1583.	2.0	11
24	Building thermally and chemically reversible covalent bonds in vegetable oil based epoxy thermosets. Influence of epoxy–hardener ratio in promoting recyclability. Materials Advances, 2020, 1, 1788-1798.	2.6	29
25	Sustainable Series of New Epoxidized Vegetable Oil-Based Thermosets with Chemical Recycling Properties. Biomacromolecules, 2020, 21, 3923-3935.	2.6	95
26	Sustainable access to fully biobased epoxidized vegetable oil thermoset materials prepared by thermal or UV-cationic processes. RSC Advances, 2020, 10, 41954-41966.	1.7	35
27	Recyclable, Repairable, and Reshapable (3R) Thermoset Materials with Shape Memory Properties from Bio-Based Epoxidized Vegetable Oils. ACS Applied Bio Materials, 2020, 3, 8094-8104.	2.3	56
28	Investigating the properties of humins foams, the porous carbonaceous materials derived from biorefinery by-products. Applied Materials Today, 2020, 20, 100622.	2.3	10
29	Polyhydroxybutyrate Bioresins with High Thermal Stability by Cross-linking with Resorcinol Diglycidyl Ether. Biomacromolecules, 2020, 21, 3447-3458.	2.6	4
30	Enhancing the Recyclability of a Vegetable Oil-Based Epoxy Thermoset through Initiator Influence. ACS Sustainable Chemistry and Engineering, 2020, 8, 7690-7700.	3.2	52
31	Design of Sustainable Materials by Cross-linking a Biobased Epoxide with Keratin and Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 6844-6852.	3.2	11
32	Chemical Reactivity and the Influence of Initiators on the Epoxidized Vegetable Oil/Dicarboxylic Acid System. Macromolecules, 2020, 53, 2526-2538.	2.2	51
33	"BIO-BASED EPOXY RESINS AND COMPOSITES FROM EPOXIDIZED LINSEED OIL CROSSLINKED WITH DIFFERENT CYCLIC ANHYDRIDES AND THEIR COMBINATION WITH LIGNIN". Cellulose Chemistry and Technology, 2020, 54, 925-938.	0.5	9
34	Curing Behavior and Properties of Sustainable Furan-Based Epoxy/Anhydride Resins. Biomacromolecules, 2019, 20, 3831-3841.	2.6	25
35	Green process to regenerate keratin from feathers with an aqueous deep eutectic solvent. RSC Advances, 2019, 9, 19720-19728.	1.7	33
36	Biomass derived epoxy systems: From reactivity to final properties. Materials Today Communications, 2019, 21, 100683.	0.9	17

#	Article	IF	CITATIONS
37	Synthesis of Resins Using Epoxies and Humins as Building Blocks: A Mechanistic Study Based on In-Situ FT-IR and NMR Spectroscopies. Molecules, 2019, 24, 4110.	1.7	13
38	Cross-linked polyfuran networks with elastomeric behaviour based on humins biorefinery by-products. Green Chemistry, 2019, 21, 6277-6289.	4.6	23
39	Self-organization of sepiolite fibbers in a biobased thermoset. Composites Science and Technology, 2019, 171, 226-233.	3.8	10
40	Structural, thermal, rheological and mechanical properties of polypropylene/graphene nanoplatelets composites: Effect of particle size and melt mixing conditions. Polymer Engineering and Science, 2018, 58, 1937-1944.	1.5	10
41	Green approaches in the synthesis of furan-based diepoxy monomers. RSC Advances, 2018, 8, 16330-16335.	1.7	26
42	Insights on Thermal and Fire Hazards of Humins in Support of Their Sustainable Use in Advanced Biorefineries. ACS Sustainable Chemistry and Engineering, 2018, 6, 16692-16701.	3.2	20
43	Autoâ€Crosslinked Rigid Foams Derived from Biorefinery Byproducts. ChemSusChem, 2018, 11, 2797-2809.	3.6	39
44	Stereodynamic control of star-epoxy/anhydride crosslinking actuated by liquid-crystalline phase transitions. Soft Matter, 2017, 13, 1956-1965.	1.2	9
45	Influence of the radial stem composition on the thermal behaviour of miscanthus and sorghum genotypes. Carbohydrate Polymers, 2017, 167, 12-19.	5.1	8
46	Preparation of polypropylene nanocomposites by meltâ€mixing: Comparison between three organoclays. Journal of Applied Polymer Science, 2017, 134, 45053.	1.3	15
47	Humins as promising material for producing sustainable carbohydrate-derived building materials. Construction and Building Materials, 2017, 139, 594-601.	3.2	60
48	Star-epoxy mesogen with 1,3,5-triazine core: a model of A ₄ B ₃ fractal polymerization in a liquid crystalline thermoset media. Polymer Chemistry, 2016, 7, 1221-1225.	1.9	12
49	From Epoxidized Linseed Oil to Bioresin: An Overall Approach of Epoxy/Anhydride Crossâ€Linking. ChemSusChem, 2015, 8, 1232-1243.	3.6	79
50	Copolymerization as a Strategy to Combine Epoxidized Linseed Oil and Furfuryl Alcohol: The Design of a Fully Bioâ€Based Thermoset. ChemSusChem, 2015, 8, 4149-4161.	3.6	40
51	Eco-friendly Optical Adhesives Based on Vegetable Oil Thermosets. Journal of the Adhesion Society of Japan, 2015, 51, 279-285.	0.0	1
52	Anisotropic reinforcement of epoxy-based nanocomposites with aligned magnetite–sepiolite hybrid nanofiller. Composites Science and Technology, 2015, 112, 34-41.	3.8	18
53	Valorization of Biorefinery Side-Stream Products: Combination of Humins with Polyfurfuryl Alcohol for Composite Elaboration. ACS Sustainable Chemistry and Engineering, 2014, 2, 2182-2190.	3.2	85
54	Complex Kinetic Pathway of Furfuryl Alcohol Polymerization Catalyzed by Green Montmorillonite Clays. Journal of Physical Chemistry B, 2012, 116, 8259-8268.	1.2	29

#	Article	IF	CITATIONS
55	Effects of Incorporation of Organically Modified Montmorillonite on the Reaction Mechanism of Epoxy/Amine Cure. Journal of Physical Chemistry B, 2012, 116, 5786-5794.	1.2	48
56	Epoxy–Amine Based Nanocomposites Reinforced by Silica Nanoparticles. Relationships between Morphologic Aspects, Cure Kinetics, and Thermal Properties. Journal of Physical Chemistry C, 2011, 115, 22789-22795.	1.5	49
57	Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochimica Acta, 2011, 521, 90-97.	1.2	63
58	Shear induced structuration of liquid crystalline epoxy thermosets. European Polymer Journal, 2010, 46, 1380-1387.	2.6	24
59	Eco-friendly composite resins based on renewable biomass resources: Polyfurfuryl alcohol/lignin thermosets. European Polymer Journal, 2010, 46, 1016-1023.	2.6	138
60	Hybrid Nanocomposites: Advanced Nonlinear Method for Calculating Key Kinetic Parameters of Complex Cure Kinetics. Journal of Physical Chemistry B, 2010, 114, 12480-12487.	1.2	77
61	Innovative green nanocomposites based on silicate clays/lignin/natural fibres. Composites Science and Technology, 2009, 69, 1979-1984.	3.8	50
62	New insights on the thermal degradation pathways of neat poly(furfuryl alcohol) and poly(furfuryl) Tj ETQq0 0 C) rgBT/Ove	erlock 10 Tf 5
63	Integral, differential and advanced isoconversional methods. Chemometrics and Intelligent Laboratory Systems, 2009, 96, 219-226.	1.8	190
64	Molecular mobility and relaxation process of isolated lignin studied by multifrequency calorimetric experiments. Physical Chemistry Chemical Physics, 2009, 11, 1227.	1.3	27
65	Chemorheological analysis and model-free kinetics of acid catalysed furfuryl alcohol polymerization. Physical Chemistry Chemical Physics, 2007, 9, 5359.	1.3	115
66	Liquid crystalline and isotropic epoxy thermosets: Mechanism and kinetics of non-isothermal degradation. Polymer Degradation and Stability, 2007, 92, 2051-2057.	2.7	19
67	Cure kinetics of a liquid-crystalline epoxy resin studied by non-isothermal data. Polymer Testing, 2004, 23, 209-215.	2.3	84
68	Synthesis and characterization of some epoxy resins bearing azomethine groups. European Polymer Journal, 1996, 32, 779-783.	2.6	12