
Daniela Marongiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/998339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct measurement of radiative decay rates in metal halide perovskites. Energy and Environmental Science, 2022, 15, 1211-1221.	30.8	7
2	Silicon-based fluorescent platforms for copper(<scp>ii</scp>) detection in water. RSC Advances, 2021, 11, 15557-15564.	3.6	6
3	Polaron Plasma in Equilibrium with Bright Excitons in 2D and 3D Hybrid Perovskites. Advanced Optical Materials, 2021, 9, 2100295.	7.3	14
4	Long-lived electrets and lack of ferroelectricity in methylammonium lead bromide CH ₃ NH ₃ PbBr ₃ ferroelastic single crystals. Physical Chemistry Chemical Physics, 2021, 23, 3233-3245.	2.8	7
5	Photoluminescence emission induced by localized states in halide-passivated colloidal two-dimensional WS ₂ nanoflakes. Journal of Materials Chemistry C, 2021, 9, 2398-2407.	5.5	3
6	Combined Experimental/Theoretical Study on the Luminescent Properties of Homoleptic/Heteroleptic Erbium(III) Anilate-Based 2D Coordination Polymers. Inorganic Chemistry, 2021, 60, 17765-17774.	4.0	8
7	Heteroleptic NIR-Emitting Yb ^{III} /Anilate-Based Neutral Coordination Polymer Nanosheets for Solvent Sensing. ACS Applied Nano Materials, 2020, 3, 94-104.	5.0	29
8	Ag/In leadâ€free double perovskites. EcoMat, 2020, 2, e12017.	11.9	16
9	Hydrophilicity and Water Contact Angle on Methylammonium Lead Iodide. Advanced Materials Interfaces, 2019, 6, 1801173.	3.7	43
10	Layered Germanium Hybrid Perovskite Bromides: Insights from Experiments and Firstâ€Principles Calculations. Advanced Functional Materials, 2019, 29, 1903528.	14.9	26
11	Bifacial Diffuse Absorptance of Semitransparent Microstructured Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 10021-10027.	8.0	10
12	The role of excitons in 3D and 2D lead halide perovskites. Journal of Materials Chemistry C, 2019, 7, 12006-12018.	5.5	80
13	Investigation of Dimethylammonium Solubility in MAPbBr ₃ Hybrid Perovskite: Synthesis, Crystal Structure, and Optical Properties. Inorganic Chemistry, 2019, 58, 944-949.	4.0	22
14	Perovskite Excitonics: Primary Exciton Creation and Crossover from Free Carriers to a Secondary Exciton Phase. Advanced Optical Materials, 2018, 6, 1700839.	7.3	36
15	Direct or Indirect Bandgap in Hybrid Lead Halide Perovskites?. Advanced Optical Materials, 2018, 6, 1701254.	7.3	54
16	Novel Physical Vapor Deposition Approach to Hybrid Perovskites: Growth of MAPbI3 Thin Films by RF-Magnetron Sputtering. Scientific Reports, 2018, 8, 15388.	3.3	30
17	Nanosheets of Two-Dimensional Neutral Coordination Polymers Based on Near-Infrared-Emitting Lanthanides and a Chlorocyananilate Ligand. Chemistry of Materials, 2018, 30, 6575-6586.	6.7	36
18	Self-Assembled Lead Halide Perovskite Nanocrystals in a Perovskite Matrix. ACS Energy Letters, 2017, 2, 769-775.	17.4	15

Daniela Marongiu

#	Article	IF	CITATIONS
19	Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7, 44629.	3.3	175
20	Paving the way for solution―processable perovskite lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 1028-1033.	0.8	3
21	Can Trihalide Lead Perovskites Support Continuous Wave Lasing?. Advanced Optical Materials, 2015, 3, 1557-1564.	7.3	72
22	Synergic combination of the sol–gel method with dip coating for plasmonic devices. Beilstein Journal of Nanotechnology, 2015, 6, 500-507.	2.8	3
23	Boosting, probing and switching-off visible light-induced photocurrents in eumelanin-porous silicon hybrids. RSC Advances, 2015, 5, 56704-56710.	3.6	8
24	Absorption F-Sum Rule for the Exciton Binding Energy in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 4566-4572.	4.6	149
25	Thickness controlled sol-gel silica films for plasmonic bio-sensing devices. , 2014, , .		2
26	Colloidal Bi ₂ S ₃ Nanocrystals: Quantum Size Effects and Midgap States. Advanced Functional Materials, 2014, 24, 3341-3350.	14.9	65
27	Optical Sensitivity Gain in Silica-Coated Plasmonic Nanostructures. Journal of Physical Chemistry Letters, 2014, 5, 2935-2940.	4.6	14
28	Correlated electron–hole plasma in organometal perovskites. Nature Communications, 2014, 5, 5049.	12.8	497
29	Enhanced Photocatalytic Activity in Low-Temperature Processed Titania Mesoporous Films. Journal of Physical Chemistry C, 2014, 118, 12000-12009.	3.1	22
30	Pore-confined synthesis of mesoporous nanocrystalline La–Ce phosphate films for sensing applications. Journal of Materials Chemistry, 2012, 22, 20498.	6.7	9
31	Liquid-Phase Preparation and Characterization of Zinc Oxide Nanoparticles. Particulate Science and Technology, 2012, 30, 32-42.	2.1	3
32	Simultaneous in situ and Time-Resolved Study of Hierarchical Porous Films Templated by Salt Nanocrystals and Self-Assembled Micelles. Journal of Physical Chemistry C, 2011, 115, 12702-12707.	3.1	3
33	Controlling shape and dimensions of pores in organic–inorganic films: nanocubes and nanospheres. New Journal of Chemistry, 2011, 35, 1624.	2.8	1
34	Shaping Mesoporous Films Using Dewetting on X-ray Pre-patterned Hydrophilic/Hydrophobic Layers and Pinning Effects at the Pattern Edge. Langmuir, 2011, 27, 3898-3905.	3.5	23
35	Innovative Composite Films of Chitosan, Methylcellulose, and Nanoparticles. Journal of Food Science, 2011, 76, N54-60.	3.1	21
36	An alternative sol–gel route for the preparation of thin films in CeO2–TiO2 binary system. Thin Solid Films, 2010, 518, 1653-1657.	1.8	14

#	Article	IF	CITATIONS
37	Sol–Gel Processing of Bi ₂ Ti ₂ O ₇ and Bi ₂ Ti ₄ O ₁₁ Films with Photocatalytic Activity. Journal of the American Ceramic Society, 2010, 93, 2897-2902.	3.8	27
38	Writing Self-Assembled Mesostructured Films with In situ Formation of Gold Nanoparticles. Chemistry of Materials, 2010, 22, 2132-2137.	6.7	34
39	Formation of cerium titanate, CeTi2O6, in sol–gel films studied by XRD and FAR infrared spectroscopy. Journal of Sol-Gel Science and Technology, 2009, 52, 356-361.	2.4	18
40	Self-Assembly of Shape Controlled Hierarchical Porous Thin Films: Mesopores and Nanoboxes. Chemistry of Materials, 2009, 21, 4846-4850.	6.7	21