
Yu-Lun Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/998256/publications.pdf Version: 2024-02-01

YULLIN CHANC

#	Article	IF	CITATIONS
1	A metal-free strategy for the cross-dehydrogenative coupling of 1,3-dicarbonyl compounds with 2-methoxyethanol. Organic and Biomolecular Chemistry, 2022, 20, 1226-1230.	2.8	4
2	Ring-Opening Polymerization of ε-Caprolactone by Using Aluminum Complexes Bearing Aryl Thioether Phenolates: Labile Thioether Chelation. Inorganic Chemistry, 2022, , .	4.0	8
3	An investigation on catalytic nitrite reduction reaction by bioinspired Cu ^{II} complexes. Dalton Transactions, 2022, 51, 7715-7722.	3.3	7
4	Bidentate acylthiourea ligand anchored Pd-PPh3 complexes with biomolecular binding, cytotoxic, antioxidant and antihemolytic properties. Journal of Inorganic Biochemistry, 2022, 233, 111843.	3.5	10
5	Pd(II)–PPh ₃ complexes of halogen substituted acylthiourea ligands: Biomolecular interactions and <i>in vitro</i> antiâ€proliferative activity. Applied Organometallic Chemistry, 2022, 36, .	3.5	6
6	Ring-opening polymerization of L-lactide by using sodium complexes bearing amide as catalysts in high polar solvent. Polymer Bulletin, 2021, 78, 2813-2827.	3.3	1
7	Titanium complexes bearing 2, 6â€bis (o â€hydroxyalkyl)pyridine ligands in vitro cytotoxicity against tripleâ€negative breastâ€cancer cells. Journal of the Chinese Chemical Society, 2021, 68, 871-877.	1.4	0
8	Collaboration between Trinuclear Aluminum Complexes Bearing Bipyrazoles in the Ring-Opening Polymerization of ε-Caprolactone. Inorganic Chemistry, 2021, 60, 10535-10549.	4.0	9
9	Effect of new Pd(II)-aroylthiourea complex on pancreatic cancer cells. Inorganic Chemistry Communication, 2021, 134, 109018.	3.9	2
10	Tris-(2-pyridyl)-pyrazolyl Borate Zinc(II) Complexes: Synthesis, DNA/Protein Binding and In Vitro Cytotoxicity Studies. Molecules, 2021, 26, 7341.	3.8	5
11	Gram-Scale Synthesis of 3-Sulfonyl Flavanones. Journal of Organic Chemistry, 2020, 85, 1033-1043.	3.2	11
12	Use of pyrazoles as ligands greatly enhances the catalytic activity of titanium iso-propoxide for the ring-opening polymerization of l-lactide: a cooperation effect. RSC Advances, 2020, 10, 40690-40696.	3.6	4
13	Metal-Free Solvent/Base-Switchable Divergent Synthesis of Multisubstituted Dihydrofurans. Organic Letters, 2020, 22, 6160-6165.	4.6	8
14	Comparison study of εâ€caprolactone , Lâ€lactide , and εâ€decalactone polymerizations using aluminum complexes bearing pyrazole derivatives, and synthesis of polylactide†gradual â€polyâ€Îµâ€caprolactone copolymer. Journal of Polymer Science, 2020, 58, 1400-1409.	3.8	2
15	Investigation on the coordination behaviors of tris(2-pyridyl)pyrazolyl borates iron(II) complexes. Inorganica Chimica Acta, 2019, 495, 118966.	2.4	5
16	Structure and nitrite reduction reactivity study of bio-inspired copper(<scp>i</scp>)–nitro complexes in steric and electronic considerations of tridentate nitrogen ligands. Dalton Transactions, 2018, 47, 5335-5341.	3.3	17
17	Improvement in Titanium Complexes Bearing Schiff Base Ligands in the Ring-Opening Polymerization of <i>L</i> -Lactide: A Dinuclear System with Hydrazine-Bridging Schiff Base Ligands. Inorganic Chemistry, 2016, 55, 1642-1650.	4.0	36
18	Catalytic improvement of titanium complexes bearing bis(aminophenolate) in ring-opening polymerization of l -lactide and É>-caprolactone. Journal of Molecular Catalysis A, 2014, 394, 97-104.	4.8	12

Yu-Lun Chang

#	Article	IF	CITATIONS
19	Use of Base Control To Provide High Selectivity between Diaryl Thioether and Diaryl Disulfide for C–S Coupling Reactions of Aryl Halides and Sulfur and a Mechanistic Study. Organometallics, 2013, 32, 5514-5522.	2.3	67
20	Copper(I) Nitro Complex with an Anionic [HB(3,5-Me ₂ Pz) ₃] ^{â^'} Ligand: A Synthetic Model for the Copper Nitrite Reductase Active Site. Inorganic Chemistry, 2012, 51, 9297-9308.	4.0	41
21	Characterization of A New Copper(I)â^'Nitrito Complex That Evolves Nitric Oxide. Inorganic Chemistry, 2010, 49, 5377-5384.	4.0	37