Feng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/998130/publications.pdf Version: 2024-02-01

FENC WANC

#	Article	IF	CITATIONS
1	Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta, 2017, 246, 509-524.	3.2	63
2	Adaptation to and recovery from drought stress at vegetative stages in wheat (Triticum aestivum) cultivars. Functional Plant Biology, 2016, 43, 1159.	2.1	50
3	Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L Plant and Soil, 2020, 447, 99-116.	3.7	41
4	Adaptation to rhizosphere acidification is a necessary prerequisite for wheat (Triticum aestivum L.) seedling resistance to ammonium stress. Plant Physiology and Biochemistry, 2016, 108, 447-455.	5.8	27
5	Higher Atmospheric CO2 Levels Favor C3 Plants Over C4 Plants in Utilizing Ammonium as a Nitrogen Source. Frontiers in Plant Science, 2020, 11, 537443.	3.6	27
6	Low Nitrogen Priming Enhances Photosynthesis Adaptation to Water-Deficit Stress in Winter Wheat (Triticum aestivum L.) Seedlings. Frontiers in Plant Science, 2019, 10, 818.	3.6	23
7	Solar composting greenhouse for organic waste treatment in fed-batch mode: Physicochemical and microbiological dynamics. Waste Management, 2020, 113, 1-11.	7.4	20
8	Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress. PLoS ONE, 2016, 11, e0160997.	2.5	18
9	Impaired electron transfer accounts for the photosynthesis inhibition in wheat seedlings (<scp><i>Triticum aestivum</i></scp> L.) subjected to ammonium stress. Physiologia Plantarum, 2019, 167, 159-172.	5.2	17
10	Improved leaf nitrogen reutilisation and Rubisco activation under short-term nitrogen-deficient conditions promotes photosynthesis in winter wheat (Triticum aestivum L.) at the seedling stage. Functional Plant Biology, 2018, 45, 840.	2.1	16
11	Glutamate over-accumulation may serve as an endogenous indicator of tricarboxylic acid (TCA) cycle suppression under NH4+ nutrition in wheat (Triticum aestivum L.) seedlings. Environmental and Experimental Botany, 2020, 177, 104130.	4.2	16
12	Enhanced Rubisco activation associated with maintenance of electron transport alleviates inhibition of photosynthesis under low nitrogen conditions in winter wheat seedlings. Journal of Experimental Botany, 2018, 69, 5477-5488.	4.8	15
13	Physiological responses of wheat (Triticum aestivum L.) germination to elevated ammonium concentrations: reserve mobilization, sugar utilization, and antioxidant metabolism. Plant Growth Regulation, 2017, 81, 209-220.	3.4	13
14	Edaphic niche characterization of four Proteaceae reveals unique calcicole physiology linked to hyperâ€endemism of Grevillea thelemanniana. New Phytologist, 2020, 228, 869-883.	7.3	10