
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9980784/publications.pdf Version: 2024-02-01

IAN I REVNOLDS

#	Article	IF	CITATIONS
1	Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. Journal of Neuroscience, 1995, 15, 3318-3327.	3.6	725
2	Mitochondrial Depolarization in Glutamate-Stimulated Neurons: An Early Signal Specific to Excitotoxin Exposure. Journal of Neuroscience, 1996, 16, 5688-5697.	3.6	586
3	Glutamate-induced neuron death requires mitochondrial calcium uptake. Nature Neuroscience, 1998, 1, 366-373.	14.8	576
4	ΔÎ [°] m-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. Journal of Neurochemistry, 2008, 79, 266-277.	3.9	535
5	Persistent Activation of ERK Contributes to Glutamate-induced Oxidative Toxicity in a Neuronal Cell Line and Primary Cortical Neuron Cultures. Journal of Biological Chemistry, 2000, 275, 12200-12206.	3.4	488
6	Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13396-13401.	7.1	484
7	Induction of Neuronal Apoptosis by Thiol Oxidation. Journal of Neurochemistry, 2002, 75, 1878-1888.	3.9	347
8	Mitochondrial Trafficking to Synapses in Cultured Primary Cortical Neurons. Journal of Neuroscience, 2006, 26, 7035-7045.	3.6	347
9	Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. Journal of Neurochemistry, 2003, 85, 563-570.	3.9	303
10	Glutamate Decreases Mitochondrial Size and Movement in Primary Forebrain Neurons. Journal of Neuroscience, 2003, 23, 7881-7888.	3.6	296
11	Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. Journal of Neuroscience, 1995, 15, 1318-1328.	3.6	281
12	Drug repurposing from the perspective of pharmaceutical companies. British Journal of Pharmacology, 2018, 175, 168-180.	5.4	281
13	3H-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 7744-7748.	7.1	272
14	Brain voltage-sensitive calcium channel subtypes differentiated by omega-conotoxin fraction GVIA Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8804-8807.	7.1	264
15	Epidermal Growth Factor Activates m-Calpain (Calpain II), at Least in Part, by Extracellular Signal-Regulated Kinase-Mediated Phosphorylation. Molecular and Cellular Biology, 2004, 24, 2499-2512.	2.3	250
16	Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiology of Disease, 2006, 22, 388-400.	4.4	240
17	Mitochondrial trafficking and morphology in healthy and injured neurons. Progress in Neurobiology, 2006, 80, 241-268.	5.7	213
18	Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium channel antagonists Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 5122-5125.	7.1	200

#	Article	IF	CITATIONS
19	MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. Journal of Neuroscience Methods, 2001, 104, 165-176.	2.5	194
20	Calcium-Antagonist Drugs. New England Journal of Medicine, 1985, 313, 995-1002.	27.0	180
21	Detection of hydrogen peroxide with Amplex Red: interference by NADH and reduced glutathione auto-oxidation. Archives of Biochemistry and Biophysics, 2004, 431, 138-144.	3.0	179
22	Tricyclic antidepressants block Nâ€methylâ€Dâ€aspartate receptors: similarities to the action of zinc. British Journal of Pharmacology, 1988, 95, 95-102.	5.4	178
23	Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion, 2005, 5, 55-65.	3.4	165
24	Apolipoprotein E4 Domain Interaction Mediates Detrimental Effects on Mitochondria and Is a Potential Therapeutic Target for Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 5215-5221.	3.4	155
25	Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Brain Research, 1992, 592, 310-316.	2.2	154
26	Spontaneous Changes in Mitochondrial Membrane Potential in Cultured Neurons. Journal of Neuroscience, 2001, 21, 5054-5065.	3.6	142
27	Calcium antagonist receptors in cardiomyopathic hamster: selective increases in heart, muscle, brain. Science, 1986, 232, 515-518.	12.6	140
28	Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. Journal of Cell Biology, 2017, 216, 1091-1105.	5.2	140
29	Glutamate-induced increases in intracellular free Mg2+ in cultured cortical neurons. Neuron, 1993, 11, 751-757.	8.1	137
30	The Relationship between Intracellular Free Iron and Cell Injury in Cultured Neurons, Astrocytes, and Oligodendrocytes. Journal of Neuroscience, 2002, 22, 5848-5855.	3.6	130
31	Reverse Na ⁺ /Ca ²⁺ Exchange Contributes to Glutamate-Induced Intracellular Ca ²⁺ Concentration Increases in Cultured Rat Forebrain Neurons. Molecular Pharmacology, 1998, 53, 742-749.	2.3	126
32	Ectopic Expression of the Catalytic Subunit of Telomerase Protects against Brain Injury Resulting from Ischemia and NMDA-Induced Neurotoxicity. Journal of Neuroscience, 2004, 24, 1280-1287.	3.6	123
33	Differences in mitochondrial movement and morphology in young and mature primary cortical neurons in culture. Neuroscience, 2006, 141, 727-736.	2.3	119
34	[3H]MK801 binding to the NMDA receptor/ionophore complex is regulated by divalent cations: evidence for multiple regulatory sites. European Journal of Pharmacology, 1988, 151, 103-112.	3.5	103
35	Characterization of hydrogen peroxide toxicity in cultured rat forebrain neurons. Neurochemical Research, 1997, 22, 333-340.	3.3	103
36	Mechanisms of Dopamine-Induced Cell Death in Cultured Rat Forebrain Neurons: Interactions with and Differences from Glutamate-Induced Cell Death. Experimental Neurology, 1997, 143, 269-281.	4.1	102

IAN J REYNOLDS

#	Article	IF	CITATIONS
37	Calcium green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons. Neuroscience Letters, 1993, 162, 149-152.	2.1	100
38	A Reevaluation of Neuronal Zinc Measurements: Artifacts Associated with High Intracellular Dye Concentration. Molecular Pharmacology, 2002, 62, 618-627.	2.3	97
39	Spontaneous Changes in Mitochondrial Membrane Potential in Single Isolated Brain Mitochondria. Biophysical Journal, 2003, 85, 3358-3366.	0.5	94
40	Ca 2+ â€induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I. Journal of Neurochemistry, 2005, 93, 526-537.	3.9	93
41	A Potent and Selective Metabotropic Glutamate Receptor 4 Positive Allosteric Modulator Improves Movement in Rodent Models of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 167-177.	2.5	91
42	High-affinity calcium indicators underestimate increases in intracellular calcium concentrations associated with excitotoxic glutamate stimulations. Neuroscience, 1999, 89, 91-100.	2.3	89
43	Direct visualization of mitochondrial zinc accumulation reveals uniporter-dependent and -independent transport mechanisms. Journal of Neurochemistry, 2005, 93, 1242-1250.	3.9	86
44	Discovery of 1,4-Substituted Piperidines as Potent and Selective Inhibitors of T-Type Calcium Channels. Journal of Medicinal Chemistry, 2008, 51, 6471-6477.	6.4	86
45	Regional Variations in [3H]MK801 Binding to Rat Brain N-Methyl-D-Aspartate Receptors. Journal of Neurochemistry, 1991, 56, 1731-1740.	3.9	80
46	Arcaine is a competitive antagonist of the polyamine site on the NMDA receptor. European Journal of Pharmacology, 1990, 177, 215-216.	3.5	79
47	Mitochondrial Membrane Potential and the Permeability Transition in Excitotoxicity. Annals of the New York Academy of Sciences, 1999, 893, 33-41.	3.8	79
48	Thermal nociception and TRPV1 function are attenuated in mice lacking the nucleotide receptor P2Y2. Pain, 2008, 138, 484-496.	4.2	79
49	Reduction of NMDA receptors with dithiothreitol increases [³ H]â€MKâ€801 binding and NMDAâ€induced Ca ²⁺ fluxes. British Journal of Pharmacology, 1990, 101, 178-182.	5.4	76
50	Simultaneous detection of intracellular free calcium and zinc using fura-2FF and FluoZin-3. Cell Calcium, 2005, 37, 225-232.	2.4	75
51	Alterations in calcium antagonist receptors and sodium-calcium exchange in cardiomyopathic hamster tissues Circulation Research, 1989, 65, 205-214.	4.5	74
52	Effects of Oxidants and Glutamate Receptor Activation on Mitochondrial Membrane Potential in Rat Forebrain Neurons. Journal of Neurochemistry, 1998, 71, 2392-2400.	3.9	72
53	Calcium ensitive Fluorescent Dyes Can Report Increases in Intracellular Free Zinc Concentration in Cultured Forebrain Neurons. Journal of Neurochemistry, 1998, 71, 2401-2410.	3.9	72
54	Quantitative evaluation of mitochondrial calcium content in rat cortical neurones following a glutamate stimulus. Journal of Physiology, 2001, 531, 793-805.	2.9	69

#	Article	IF	CITATIONS
55	Glutamate-induced intracellular calcium changes and neurotoxicity in cortical neuronsin vitro: Effect of chemical ischemia. Neuroscience, 1994, 62, 667-679.	2.3	68
56	Emergence of excitotoxicity in cultured forebrain neurons coincides with larger glutamate-stimulated [Ca2+]i increases and NMDA receptor mRNA levels. Brain Research, 1999, 849, 97-108.	2.2	68
57	Astrocytes Are More Resistant Than Neurons to the Cytotoxic Effects of Increased [Zn2+]i. Neurobiology of Disease, 2000, 7, 310-320.	4.4	67
58	Zn2+ Inhibits Mitochondrial Movement in Neurons by Phosphatidylinositol 3-Kinase Activation. Journal of Neuroscience, 2005, 25, 9507-9514.	3.6	67
59	Characterization of the Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 ADX88178 in Rodent Models of Neuropsychiatric Disorders. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 495-505.	2.5	64
60	NMDA Receptorâ€Mediated Neurotoxicity: A Paradoxical Requirement for Extracellular Mg ²⁺ in Na ⁺ /Ca ²⁺ â€Free Solutions in Rat Cortical Neurons In Vitro. Journal of Neurochemistry, 1997, 68, 1836-1845.	3.9	62
61	Mitochondrial trafficking and morphology in neuronal injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 143-150.	3.8	62
62	Synthesis of a potent wide-spectrum serotonin-, norepinephrine-, dopamine-reuptake inhibitor (SNDRI) and a species-selective dopamine-reuptake inhibitor based on the gamma-amino alcohol functional group. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 487-492.	2.2	61
63	Nuclear and Mitochondrial Interaction Involving mt-Nd2 Leads to Increased Mitochondrial Reactive Oxygen Species Production*. Journal of Biological Chemistry, 2007, 282, 5171-5179.	3.4	57
64	Oxidized glutathione modulates and depolarization-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Neuroscience Letters, 1991, 133, 11-14.	2.1	54
65	Alkalinization Prolongs Recovery from Glutamate-Induced Increases in Intracellular Ca2+ Concentration by Enhancing Ca2+ Efflux Through the Mitochondrial Na+/Ca2+ Exchanger in Cultured Rat Forebrain Neurons. Journal of Neurochemistry, 2002, 71, 1051-1058.	3.9	54
66	Divergent consequences arise from metallothionein overexpression in astrocytes: Zinc buffering and oxidant-induced zinc release. Glia, 2004, 45, 346-353.	4.9	53
67	Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. Journal of Neurochemistry, 2006, 97, 800-806.	3.9	51
68	Modulation of NMDA receptor responsiveness by neurotransmitters, drugs and chemical modification. Life Sciences, 1990, 47, 1785-1792.	4.3	49
69	Effects of nicotinic agonists on the NMDA receptor. Brain Research, 1991, 551, 355-357.	2.2	49
70	Calcium channel blockade: possible explanation for thioridazine's peripheral side effects. American Journal of Psychiatry, 1984, 141, 352-357.	7.2	47
71	[3H]verapamil binding sites in brain and skeletal muscle: Regulation by calcium. European Journal of Pharmacology, 1983, 95, 319-321.	3.5	43
72	Pentamidine is an N-methyl-D-aspartate receptor antagonist and is neuroprotective in vitro. Journal of Neuroscience, 1992, 12, 970-975.	3.6	43

IAN J REYNOLDS

#	Article	IF	CITATIONS
73	Trifluoperazine and dibucaine-induced inhibition of glutamate-induced mitochondrial depolarization in rat cultured forebrain neurones. British Journal of Pharmacology, 1997, 122, 803-808.	5.4	43
74	Orally Administered Progesterone Enhances Sensitivity to Triazolam in Postmenopausal Women. Journal of Clinical Psychopharmacology, 1995, 15, 3-11.	1.4	43
75	The role of intracellular Na+and mitochondria in buffering of kainate-induced intracellular free Ca2+changes in rat forebrain neurones. Journal of Physiology, 1998, 509, 103-116.	2.9	42
76	Title is missing!. Molecular and Cellular Biochemistry, 2002, 234/235, 211-217.	3.1	42
77	Fluctuations in Mitochondrial Membrane Potential in Single Isolated Brain Mitochondria: Modulation by Adenine Nucleotides and Ca2+. Biophysical Journal, 2004, 87, 3585-3593.	0.5	42
78	Synthesis and bioactivity of a new class of rigid glutamate analogs. Modulators of the N-methyl-D-aspartate receptor. Journal of Medicinal Chemistry, 1990, 33, 1561-1571.	6.4	41
79	Effects of pyrroloquinoline quinone on glutamate-induced production of reactive oxygen species in neurons. European Journal of Pharmacology, 1997, 326, 67-74.	3.5	41
80	Distinct characteristics of Ca2+-induced depolarization of isolated brain and liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1709, 127-137.	1.0	40
81	Glutamate mobilizes [Zn ²⁺] _i through Ca ²⁺ â€dependent reactive oxygen species accumulation. Journal of Neurochemistry, 2008, 106, 2184-2193.	3.9	40
82	NMDA receptor antagonists that bind to the strychnine-insensitive glycine site and inhibit NMDA-induced Ca2+ fluxes and [3H]GABA release. European Journal of Pharmacology, 1989, 172, 9-17.	2.6	39
83	Mitochondrial Trafficking in Neurons: A Key Variable in Neurodegeneration?. Journal of Bioenergetics and Biomembranes, 2004, 36, 283-286.	2.3	39
84	Dopaminergic neurotoxins require excitotoxic stimulation in organotypic cultures. Neurobiology of Disease, 2005, 20, 639-645.	4.4	39
85	PET imaging of brain macrophages using the peripheral benzodiazepine receptor in a macaque model of neuroAIDS. Journal of Clinical Investigation, 2004, 113, 981-989.	8.2	39
86	Allosteric Modulation of N-Methyl-D-Aspartate Receptors. Advances in Pharmacology, 1990, 21, 101-126.	2.0	37
87	Glucose deprivation produces a prolonged increase in sensitivity to glutamate in cultured rat cortical neurons. Experimental Neurology, 2003, 183, 682-694.	4.1	36
88	Transcriptional responses to loss or gain of function of the leucine-rich repeat kinase 2 (LRRK2) gene uncover biological processes modulated by LRRK2 activity. Human Molecular Genetics, 2012, 21, 163-174.	2.9	34
89	New perspectives on mitochondrial morphology in cell function. Biology of the Cell, 2003, 95, 239-242.	2.0	33
90	The targeted eosinophil-lowering effects of dexpramipexole in clinical studies. Blood Cells, Molecules, and Diseases, 2017, 63, 62-65.	1.4	32

#	Article	IF	CITATIONS
91	Pridopidine, a clinicâ€ready compound, reduces 3,4â€dihydroxyphenylalanineâ€induced dyskinesia in Parkinsonian macaques. Movement Disorders, 2019, 34, 708-716.	3.9	32
92	Calcium Antagonist Receptors Annals of the New York Academy of Sciences, 1988, 522, 116-133.	3.8	31
93	Muscarinic Agonists Cause Calcium Influx and Calcium Mobilization in Forebrain Neurons In Vitro. Journal of Neurochemistry, 1989, 53, 226-233.	3.9	31
94	[³ H] CGP 39653 Binding to the Agonist Site of the <i>N</i> â€Methyl―Dâ€Aspartate Receptor Is Modulated by Mg ²⁺ and Polyamines Independently of the Arcaine‣ensitive Polyamine Site. Journal of Neurochemistry, 1994, 62, 54-62.	3.9	31
95	Effects of age and visual experience on [3H] MK801 binding to NMDA receptors in the kitten visual cortex. Experimental Brain Research, 1991, 85, 611-5.	1.5	30
96	Cyclothiazide Modulates AMPA Receptorâ€Mediated Increases in Intracellular Free Ca ²⁺ and Mg ²⁺ in Cultured Neurons from Rat Brain. Journal of Neurochemistry, 1995, 64, 2049-2056.	3.9	30
97	Modulation of [3H]flunitrazepam binding by natural and synthetic progestational agents. Pharmacology Biochemistry and Behavior, 1993, 45, 77-83.	2.9	25
98	Pharmacological investigation of mitochondrial Ca2+transport in central neurons: studies with CGP-37157, an inhibitor of the mitochondrial Na+–Ca2+exchanger. Cell Calcium, 2000, 28, 317-327.	2.4	25
99	Attenuation of scratchâ€induced reactive astrogliosis by novel EphA4 kinase inhibitors. Journal of Neurochemistry, 2011, 118, 1016-1031.	3.9	25
100	Elevated intracellular zinc and altered proton homeostasis in forebrain neurons. Neuroscience, 2002, 114, 439-449.	2.3	22
101	Effect of neuroactive steroids on [3H]flumazenil binding to the GABAA receptor complex in vitro. Neuropharmacology, 1995, 34, 1169-1175.	4.1	21
102	The spider toxin, argiotoxin ₆₃₆ , binds to a Mg ²⁺ site on the Nâ€methylâ€ <scp>d</scp> â€aspartate receptor complex. British Journal of Pharmacology, 1991, 103, 1373-1376	5. ^{5.4}	20
103	The Multifaceted Roles of Zinc in Neuronal Mitochondrial Dysfunction. Biomedicines, 2021, 9, 489.	3.2	19
104	Synaptosomal dopamine uptake in rat striatum following controlled cortical impact. Journal of Neuroscience Research, 2005, 80, 85-91.	2.9	18
105	Chapter 15 Intracellular calcium and magnesium: Critical determinants of excitotoxicity?. Progress in Brain Research, 1998, 116, 225-243.	1.4	16
106	Mitochondrial Stop and Go: Signals That Regulate Organelle Movement. Science Signaling, 2004, 2004, pe46.	3.6	16
107	Fluorescence Detection of Redox-Sensitive Metals in Neuronal Culture: Focus on Iron and Zinc. Annals of the New York Academy of Sciences, 2004, 1012, 27-36.	3.8	16
108	Excitatory amino acid receptors: NMDA modulatory sites, kainate cloned and a new role in AIDS. Trends in Pharmacological Sciences, 1990, 11, 1-3.	8.7	14

#	Article	IF	CITATIONS
109	Effects of Monovalent and Divalent Cations on 3-(+)[1251]Iododizocilpine Binding to the N-Methyl-d-Aspartate Receptor of Rat Brain Membranes. Journal of Neurochemistry, 1992, 58, 1469-1476.	3.9	12
110	Calcium influx but not pH or ATP level mediates glutamate-induced changes in intracellular magnesium in cortical neurons. Journal of Neurophysiology, 1995, 74, 942-949.	1.8	12
111	Novel bisbenzamidines and bisbenzimidazolines as noncompetitive NMDA receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1299-1304.	2.2	12
112	Effects of pH on the actions of dizocilpine at the Nâ€methylâ€Dâ€aspartate receptor complex. British Journal of Pharmacology, 1993, 109, 107-112.	5.4	11
113	Characterization of the effects of polyamines on the modulation of the N-methyl-d-aspartate receptor by glycine. Neuropharmacology, 1995, 34, 1147-1157.	4.1	11
114	Effects of the selective adenosine A2A receptor antagonist, SCH 412348, on the parkinsonian phenotype of MitoPark mice. European Journal of Pharmacology, 2014, 728, 31-38.	3.5	11
115	Lack of Protection with a Novel, Selective Melanocortin Receptor Subtype-4 Agonist RY767 in a Rat Transient Middle Cerebral Artery Occlusion Stroke Model. Pharmacology, 2009, 83, 38-44.	2.2	10
116	The Redox Biology of Excitotoxic Processes: The NMDA Receptor, TOPA Quinone, and the Oxidative Liberation of Intracellular Zinc. Frontiers in Neuroscience, 2020, 14, 778.	2.8	10
117	Calcium Antagonist Receptors. , 1988, 1, 213-249.		10
118	Studies on the effects of several pentamidine analogues on the NMDA receptor. European Journal of Pharmacology, 1993, 244, 175-179.	2.6	9
119	Aromatic analogs of arcaine inhibit MK-801 binding to the NMDA receptor. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3459-3464.	2.2	9
120	Apoptosis and the laws of thermodynamics. Nature Cell Biology, 2000, 2, E172-E172.	10.3	9
121	The Use of Ligand Binding in Assays of NMDA Receptor Function. , 1999, 128, 93-102.		8
122	Synthesis and biological activity of 8a-phenyldecahydroquinolines as probes of PCP's binding conformation. A new PCP-like compound with increased in vivo potency. Journal of Medicinal Chemistry, 1992, 35, 1634-1638.	6.4	7
123	Localization of D1 dopamine receptors on live cultured striatal neurons by quantitative fluorescence microscopy. Brain Research, 1996, 731, 21-30.	2.2	7
124	[3 H](+)MK801 Radioligand Binding Assay at the N â€Methyl―D â€Aspartate Receptor. Current Protocols in Pharmacology, 2000, 11, Unit 1.20.	4.0	7
125	[125I]Thienylphencyclidine, a novel ligand for the NMDA receptor. European Journal of Pharmacology, 1992, 226, 53-58.	2.6	6

126 Common threads in neurodegenerative disorders of aging. , 2006, 2, 322-326.

6

IAN J REYNOLDS

#	Article	IF	CITATIONS
127	Physiological and Pharmacological Correlates of Calcium Antagonist Receptors. Journal of Cardiovascular Pharmacology, 1987, 10, S1-9.	1.9	5
128	Modulation of NMDA Excitotoxicity by Redox Reagents. Annals of the New York Academy of Sciences, 1992, 648, 125-131.	3.8	4
129	Mitochondria in Acute Brain Injury. , 2001, , 145-161.		3
130	Interaction of rigid polyamine analogues with the NMDA receptor complex from rat brain. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 85-90.	2.2	2
131	Desensitization of 5HT2Receptors by Protein Kinase C Activation in Distal Pulmonary Vascular Smooth Muscle Cells in Culture. Microcirculation, 1994, 1, 129-135.	1.8	2
132	A Characterization of Dopaminergic Neurodegeneration in Organotypic Cultures. Annals of the New York Academy of Sciences, 2003, 991, 304-306.	3.8	2
133	PISA, A novel pharmacodynamic assay for assessing poly(ADP-ribose) polymerase (PARP) activity in situ. Journal of Pharmacological and Toxicological Methods, 2010, 61, 319-328.	0.7	2
134	High Throughput Monitoring of Amyloid-β42 Assembly into Soluble Oligomers Achieved by Sensitive Conformation State-Dependent Immunoassays. Journal of Alzheimer's Disease, 2011, 25, 655-669.	2.6	2
135	Complex polyamine effects on [3H]MDL 105,519 binding to the NMDA receptor glycine site. Neurochemistry International, 1998, 33, 155-159.	3.8	1
136	Measurement of Cation Movement in Primary Cultures Using Fluorescent Dyes. Current Protocols in Neuroscience, 1998, 4, Unit7.11.	2.6	1
137	Intracellular Signalling in Glutamate Excitotoxicity. , 1996, , 1-7.		Ο