Per Jesper Sjöström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/998050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pre- and postsynaptically expressed spike-timing-dependent plasticity contribute differentially to neuronal learning. PLoS Computational Biology, 2022, 18, e1009409.	1.5	3
2	NMDA receptors in axons: there's no coincidence. Journal of Physiology, 2021, 599, 367-387.	1.3	20
3	Rare CASP6N73T variant associated with hippocampal volume exhibits decreased proteolytic activity, synaptic transmission defect, and neurodegeneration. Scientific Reports, 2021, 11, 12695.	1.6	8
4	The secret life of memory receptors. ELife, 2021, 10, .	2.8	0
5	Editorial: Latest Advances on Excitatory Synapse Biology. Frontiers in Synaptic Neuroscience, 2021, 13, 768651.	1.3	1
6	Grand Challenge at the Frontiers of Synaptic Neuroscience. Frontiers in Synaptic Neuroscience, 2021, 13, 748937.	1.3	4
7	Editorial: Methods for Synaptic Interrogation. Frontiers in Synaptic Neuroscience, 2020, 12, 23.	1.3	1
8	A Practical Guide to Using CV Analysis for Determining the Locus of Synaptic Plasticity. Frontiers in Synaptic Neuroscience, 2020, 12, 11.	1.3	23
9	A Step-by-Step Protocol for Optogenetic Kindling. Frontiers in Neural Circuits, 2020, 14, 3.	1.4	7
10	Novel Optogenetic Approaches in Epilepsy Research. Frontiers in Neuroscience, 2019, 13, 947.	1.4	29
11	An Optogenetic Kindling Model of Neocortical Epilepsy. Scientific Reports, 2019, 9, 5236.	1.6	54
12	Editorial overview: Neurobiology of learning and plasticity. Current Opinion in Neurobiology, 2019, 54, iii-vi.	2.0	0
13	Methylene blue inhibits Caspase-6 activity, and reverses Caspase-6-induced cognitive impairment and neuroinflammation in aged mice. Acta Neuropathologica Communications, 2019, 7, 210.	2.4	25
14	Towards resolving the presynaptic NMDA receptor debate. Current Opinion in Neurobiology, 2018, 51, 1-7.	2.0	68
15	Differential susceptibility of striatal, hippocampal and cortical neurons to Caspase-6. Cell Death and Differentiation, 2018, 25, 1319-1335.	5.0	14
16	Synapse Type-Dependent Expression of Calcium-Permeable AMPA Receptors. Frontiers in Synaptic Neuroscience, 2018, 10, 34.	1.3	25
17	CosMIC: A Consistent Metric for Spike Inference from Calcium Imaging. Neural Computation, 2018, 30, 2726-2756.	1.3	6
18	Functional consequences of pre- and postsynaptic expression of synaptic plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160153.	1.8	50

Per Jesper SjĶstrĶm

#	Article	IF	CITATIONS
19	Differential Regulation of Evoked and Spontaneous Release by Presynaptic NMDA Receptors. Neuron, 2017, 96, 839-855.e5.	3.8	76
20	Unconventional NMDA Receptor Signaling. Journal of Neuroscience, 2017, 37, 10800-10807.	1.7	99
21	ABLE: An Activity-Based Level Set Segmentation Algorithm for Two-Photon Calcium Imaging Data. ENeuro, 2017, 4, ENEURO.0012-17.2017.	0.9	35
22	Synapseâ€specific expression of calciumâ€permeable AMPA receptors in neocortical layer 5. Journal of Physiology, 2016, 594, 837-861.	1.3	41
23	Neocortex: a lean mean memory storage machine. Nature Neuroscience, 2016, 19, 643-644.	7.1	9
24	In Vitro Investigation of Synaptic Plasticity. Cold Spring Harbor Protocols, 2016, 2016, pdb.top087262.	0.2	11
25	Using Multiple Whole-Cell Recordings to Study Spike-Timing-Dependent Plasticity in Acute Neocortical Slices. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot091306.	0.2	14
26	Long-Term Potentiation by Theta-Burst Stimulation Using Extracellular Field Potential Recordings in Acute Hippocampal Slices. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot091298.	0.2	15
27	Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science, 2016, 351, 849-854.	6.0	221
28	Functional plasticity at dendritic synapses. , 2016, , 505-556.		7
29	ISDN2014_0407: Optogenetic kindling of cortical circuits elicits epilepsy. International Journal of Developmental Neuroscience, 2015, 47, 122-122.	0.7	1
30	Synapse-type-specific plasticity in local circuits. Current Opinion in Neurobiology, 2015, 35, 127-135.	2.0	76
31	Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning. ELife, 2015, 4, .	2.8	44
32	A comparison of manual neuronal reconstruction from biocytin histology or 2-photon imaging: morphometry and computer modeling. Frontiers in Neuroanatomy, 2014, 8, 65.	0.9	22
33	Neuronal morphometry directly from bitmap images. Nature Methods, 2014, 11, 982-984.	9.0	517
34	Probabilistic inference of synaptic dynamics in neocortical microcircuits. BMC Neuroscience, 2013, 14,	0.8	0
35	Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits. Frontiers in Computational Neuroscience, 2013, 7, 75.	1.2	71
36	Target-cell-specific short-term plasticity in local circuits. Frontiers in Synaptic Neuroscience, 2013, 5, 11.	1.3	75

Per Jesper SjĶstrĶm

#	Article	IF	CITATIONS
37	How to train a neuron. ELife, 2013, 2, e00491.	2.8	О
38	Target-Specific Expression of Presynaptic NMDA Receptors in Neocortical Microcircuits. Neuron, 2012, 75, 451-466.	3.8	120
39	Spike-Timing-Dependent Plasticity: A Comprehensive Overview. Frontiers in Synaptic Neuroscience, 2012, 4, 2.	1.3	228
40	A history of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 2011, 3, 4.	1.3	311
41	One cell to rule them all, and in the dendrites bind them. Frontiers in Synaptic Neuroscience, 2011, 3, 5.	1.3	19
42	Functional specificity of local synaptic connections in neocortical networks. Nature, 2011, 473, 87-91.	13.7	719
43	Frontiers. , 2010, , 197-203.		Ο
44	A piece of the neocortical puzzle: the pyramidâ€Martinotti cell reciprocating principle. Journal of Physiology, 2009, 587, 5301-5302.	1.3	5
45	Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nature Neuroscience, 2009, 12, 463-473.	7.1	170
46	Dendritic Excitability and Synaptic Plasticity. Physiological Reviews, 2008, 88, 769-840.	13.1	607
47	Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses. Neuropharmacology, 2007, 52, 176-184.	2.0	82
48	A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons. Neuron, 2006, 51, 227-238.	3.8	366
49	Optimal Information Storage in Noisy Synapses under Resource Constraints. Neuron, 2006, 52, 409-423.	3.8	76
50	Novel presynaptic mechanisms for coincidence detection in synaptic plasticity. Current Opinion in Neurobiology, 2006, 16, 312-322.	2.0	104
51	Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. PLoS Biology, 2005, 3, e68.	2.6	1,222
52	Endocannabinoid-Dependent Neocortical Layer-5 LTD in the Absence of Postsynaptic Spiking. Journal of Neurophysiology, 2004, 92, 3338-3343.	0.9	85
53	A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nature Neuroscience, 2004, 7, 518-524.	7.1	139
54	Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors. Neuron, 2003, 39, 641-654.	3.8	532

#	Article	IF	CITATIONS
55	Rate and timing in cortical synaptic plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1851-1857.	1.8	28
56	Spike timing, calcium signals and synaptic plasticity. Current Opinion in Neurobiology, 2002, 12, 305-314.	2.0	199
57	Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity. Neuron, 2001, 32, 1149-1164.	3.8	1,022
58	Artificial neural network-aided image analysis system for cell counting. , 1999, 36, 18-26.		54
59	Spike-timing dependent plasticity. Frontiers Research Topics, 0, , .	0.2	17