Masanori Honsho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9979555/publications.pdf

Version: 2024-02-01

53 papers	3,976 citations	29 h-index	223800 46 g-index
55	55	55	5748
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Peroxisome Deficiency Impairs BDNF Signaling and Memory. Frontiers in Cell and Developmental Biology, 2020, 8, 567017.	3.7	7
2	Distinct Functions of Acyl/Alkyl Dihydroxyacetonephosphate Reductase in Peroxisomes and Endoplasmic Reticulum. Frontiers in Cell and Developmental Biology, 2020, 8, 855.	3.7	16
3	Mammalian Homologue NME3 of DYNAMO1 Regulates Peroxisome Division. International Journal of Molecular Sciences, 2020, 21, 8040.	4.1	11
4	Recent insights into peroxisome biogenesis and associated diseases. Journal of Cell Science, 2020, 133, .	2.0	41
5	A peroxisome deficiency–induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway. Journal of Biological Chemistry, 2020, 295, 5321-5334.	3.4	12
6	Peroxisome: Metabolic Functions and Biogenesis. Advances in Experimental Medicine and Biology, 2020, 1299, 3-17.	1.6	33
7	A Mouse Model System to Study Peroxisomal Roles in Neurodegeneration of Peroxisome Biogenesis Disorders. Advances in Experimental Medicine and Biology, 2020, 1299, 119-143.	1.6	2
8	Peroxisome Biogenesis Disorders. Advances in Experimental Medicine and Biology, 2020, 1299, 45-54.	1.6	17
9	Systematic Identification of Regulators of Oxidative Stress Reveals Non-canonical Roles for Peroxisomal Import and the Pentose Phosphate Pathway. Cell Reports, 2020, 30, 1417-1433.e7.	6.4	49
10	Mitotic phosphorylation of Pex14p regulates peroxisomal import machinery. Journal of Cell Biology, 2020, 219, .	5.2	18
11	Molecular basis of local energy generation during mitochondrial and peroxisomal division. Plant Morphology, 2020, 32, 59-73.	0.1	O
12	Plasmalogen mediates integration of adherens junction. Journal of Biochemistry, 2019, 166, 423-432.	1.7	2
13	Impaired plasmalogen synthesis dysregulates liver X receptor-dependent transcription in cerebellum. Journal of Biochemistry, 2019, 166, 353-361.	1.7	14
14	An alternative membrane topology permits lipid droplet localization of peroxisomal fatty acyl-CoA reductase 1. Journal of Cell Science, 2019, 132, .	2.0	15
15	Homeostasis of Plasmalogens in Mammals. , 2019, , 218-223.		1
16	Onsite GTP fuelling via DYNAMO1 drives division of mitochondria and peroxisomes. Nature Communications, 2018, 9, 4634.	12.8	29
17	Peroxisome biogenesis deficiency attenuates the BDNF-TrkB pathway-mediated development of the cerebellum. Life Science Alliance, 2018, 1, e201800062.	2.8	19
18	Defining dynamin-based ring organizing center on the peroxisome-dividing machinery isolated from Cyanidioschyzon merolae. Journal of Cell Science, 2017, 130, 853-867.	2.0	10

#	Article	IF	CITATIONS
19	Peroxisomal Membrane and Matrix Protein Import Using a Semi-Intact Mammalian Cell System. Methods in Molecular Biology, 2017, 1595, 213-219.	0.9	2
20	In Vitro PMP Import Analysis Using Cell-Free Synthesized PMP and Isolated Peroxisomes. Methods in Molecular Biology, 2017, 1595, 207-212.	0.9	0
21	Analysis of Plasmalogen Synthesis in Cultured Cells. Methods in Molecular Biology, 2017, 1595, 55-61.	0.9	1
22	Plasmalogen biosynthesis is spatiotemporally regulated by sensing plasmalogens in the inner leaflet of plasma membranes. Scientific Reports, 2017, 7, 43936.	3.3	43
23	Reduction of Ether-Type Glycerophospholipids, Plasmalogens, by NF-κB Signal Leading to Microglial Activation. Journal of Neuroscience, 2017, 37, 4074-4092.	3.6	41
24	Plasmalogen homeostasis – regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Letters, 2017, 591, 2720-2729.	2.8	83
25	Peroxisome homeostasis: Mechanisms of division and selective degradation of peroxisomes in mammals. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 984-991.	4.1	57
26	Pex11mediates peroxisomal proliferation by promoting deformation of the lipid membrane. Biology Open, 2015, 4, 710-721.	1.2	40
27	Dysregulation of Plasmalogen Homeostasis Impairs Cholesterol Biosynthesis. Journal of Biological Chemistry, 2015, 290, 28822-28833.	3.4	49
28	Peroxisome biogenesis in mammalian cells. Frontiers in Physiology, 2014, 5, 307.	2.8	114
29	Very-long-chain polyunsaturated fatty acids accumulate in phosphatidylcholine of fibroblasts from patients with Zellweger syndrome and acyl-CoA oxidase1 deficiency. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 610-619.	2.4	46
30	Mild reduction of plasmalogens causes rhizomelic chondrodysplasia punctata: functional characterization of a novel mutation. Journal of Human Genetics, 2014, 59, 387-392.	2.3	9
31	Molecular Complex Coordinating Peroxisome Morphogenesis in Mammalian Cells., 2014,, 391-401.		2
32	Topogenesis and Homeostasis of Fatty Acyl-CoA Reductase 1. Journal of Biological Chemistry, 2013, 288, 34588-34598.	3.4	59
33	Mff functions with Pex $11p\hat{l}^2$ and DLP1 in peroxisomal fission. Biology Open, 2013, 2, 998-1006.	1.2	63
34	Docosahexaenoic acid mediates peroxisomal elongation, a prerequisite for peroxisome division. Journal of Cell Science, 2012, 125, 589-602.	2.0	51
35	Interaction defect of the medium isoform of PTS1-receptor Pex5p with PTS2-receptor Pex7p abrogates the PTS2 protein import into peroxisomes in mammals. Journal of Biochemistry, 2011, 149, 203-210.	1.7	6
36	Posttranslational Regulation of Fatty Acyl-CoA Reductase 1, Far1, Controls Ether Glycerophospholipid Synthesis. Journal of Biological Chemistry, 2010, 285, 8537-8542.	3.4	103

3

#	Article	IF	Citations
37	Isolation and characterization of mutant animal cell line defective in alkyl-dihydroxyacetonephosphate synthase: Localization and transport of plasmalogens to post-Golgi compartments. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1857-1865.	4.1	65
38	Flotillin-Dependent Clustering of the Amyloid Precursor Protein Regulates Its Endocytosis and Amyloidogenic Processing in Neurons. Journal of Neuroscience, 2008, 28, 2874-2882.	3.6	180
39	Alzheimer's disease \hat{l}^2 -amyloid peptides are released in association with exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11172-11177.	7.1	1,133
40	Detergent-Resistant Membranes and the Use of Cholesterol Depletion., 2006,, 5-9.		0
41	Generation of single and double knockdowns in polarized epithelial cells by retrovirus-mediated RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4912-4917.	7.1	91
42	Involvement of caveolin-2 in caveolar biogenesis in MDCK cells. FEBS Letters, 2003, 538, 85-88.	2.8	62
43	Resistance of cell membranes to different detergents. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5795-5800.	7.1	598
44	Dual Subcellular Distribution of Cytochrome b5 in Plant, Cauliflower, Cells. Journal of Biochemistry, 2003, 133, 115-121.	1.7	43
45	The Membrane Biogenesis Peroxin Pex16p. Journal of Biological Chemistry, 2002, 277, 44513-44524.	3.4	74
46	Topogenesis of Peroxisomal Membrane Protein Requires a Short, Positively Charged Intervening-loop Sequence and Flanking Hydrophobic Segments. Journal of Biological Chemistry, 2001, 276, 9375-9382.	3.4	56
47	The Mammalian Peroxin Pex5pL, the Longer Isoform of the Mobile Peroxisome Targeting Signal (PTS) Type 1 Transporter, Translocates the Pex7p·PTS2 Protein Complex into Peroxisomes via Its Initial Docking Site, Pex14p. Journal of Biological Chemistry, 2000, 275, 21703-21714.	3.4	191
48	PEX3 Is the Causal Gene Responsible for Peroxisome Membrane Assembly–Defective Zellweger Syndrome of Complementation Group G. American Journal of Human Genetics, 2000, 67, 976-981.	6.2	69
49	Mutation in PEX16 Is Causal in the Peroxisome-Deficient Zellweger Syndrome of Complementation Group D. American Journal of Human Genetics, 1998, 63, 1622-1630.	6.2	156
50	Retention of Cytochrome b5 in the Endoplasmic Reticulum Is Transmembrane and Luminal Domain-dependent. Journal of Biological Chemistry, 1998, 273, 20860-20866.	3.4	52
51	Charged Amino Acids at the Carboxyl-Terminal Portions Determine the Intracellular Locations of Two Isoforms of Cytochromeb 5. Journal of Biological Chemistry, 1998, 273, 31097-31102.	3.4	100
52	In Situ Topology of Cytochrome b5 in the Endoplasmic Reticulum Membrane. Journal of Biochemistry, 1996, 120, 828-833.	1.7	30
53	ATP8B2-Mediated Asymmetric Distribution of Plasmalogens Regulates Plasmalogen Homeostasis and Plays a Role in Intracellular Signaling. Frontiers in Molecular Biosciences, 0, 9, .	3.5	11