Jerzy HoÅ,a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/997801/publications.pdf

Version: 2024-02-01

		394286	454834
33	934	19	30
papers	citations	h-index	g-index
35	35	35	654
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	New paradigm in the metrology of concrete surface morphology: Methods, parameters and applications. Measurement: Journal of the International Measurement Confederation, 2021, 169, 108497.	2.5	13
2	Historical Buildings Dampness Analysis Using Electrical Tomography and Machine Learning Algorithms. Energies, 2021, 14, 1307.	1.6	23
3	The Influence of External Environmental Conditions on Properties of Ceramic Building Materials with Waste Material Additives. Materials, 2021, 14, 2982.	1.3	O
4	Evaluation of interlayer bonding in layered composites based on non-destructive measurements and machine learning: Comparative analysis of selected learning algorithms. Automation in Construction, 2021, 132, 103977.	4.8	10
5	Methodology for Controlling the Technological Process of Executing Floors Made of Cement-Based Materials. Materials, 2020, 13, 948.	1.3	2
6	Failure process of compressed self-compacting concrete modified with nanoparticles assessed by acoustic emission method. Automation in Construction, 2020, 112, 103111.	4.8	19
7	Microstructural and mechanical assessment of the causes of failure of floors made of polyurethane-cement composites. Composite Structures, 2020, 238, 112002.	3.1	16
8	Artificial neural networks for non-destructive identification of the interlayer bonding between repair overlay and concrete substrate. Advances in Engineering Software, 2020, 141, 102769.	1.8	26
9	Analysis of the causes of cracks in marble slabs in a large-surface floor of a representative commercial facility. Engineering Failure Analysis, 2019, 97, 1-9.	1.8	8
10	Degradacja budynków zabytkowych wskutek nadmiernego zawilgocenia – wybrane problemy. Budownictwo I Architektura, 2019, 17, 133-148.	0.1	3
11	Study on properties of self-compacting concrete modified with nanoparticles. Archives of Civil and Mechanical Engineering, 2018, 18, 877-886.	1.9	63
12	Pull-off adhesion prediction of variable thick overlay to the substrate. Automation in Construction, 2018, 85, 10-23.	4.8	38
13	Multi-sensor evaluation of the concrete within the interlayer bond with regard to pull-off adhesion. Archives of Civil and Mechanical Engineering, 2018, 18, 573-582.	1.9	21
14	The effect of failure to comply with technological and technical requirements on the condition of newly built cement mortar floors. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2018, , 146442071879937.	0.7	5
15	Analysis of the Moisture Content of Masonry Walls in Historical Buildings Using the Basement of a Medieval Town Hall as an Example. Procedia Engineering, 2017, 172, 363-368.	1.2	28
16	Microstructural Analysis of Self-compacting Concrete Modified with the Addition of Nanoparticles. Procedia Engineering, 2017, 172, 776-783.	1.2	28
17	The effect of the porosity within the interfacial zone between layers on pull-off adhesion. Construction and Building Materials, 2017, 152, 887-897.	3.2	26
18	Non-destructive neural identification of the bond between concrete layers in existing elements. Construction and Building Materials, 2016, 127, 49-58.	3.2	27

#	Article	IF	Citations
19	Non-destructive neural identification of the moisture content of saline ceramic bricks. Construction and Building Materials, 2016, 113, 144-152.	3.2	12
20	Non-destructive identification of cracks in unilaterally accessible massive concrete walls in hydroelectric power plant. Archives of Civil and Mechanical Engineering, 2016, 16, 413-421.	1.9	5
21	Evaluation of the height 3D roughness parameters of concrete substrate and the adhesion to epoxy resin. International Journal of Adhesion and Adhesives, 2016, 67, 3-13.	1.4	66
22	Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2015, 63, 87-96.	0.8	57
23	ANN modeling of pull-off adhesion of concrete layers. Advances in Engineering Software, 2015, 89, 17-27.	1.8	37
24	Usefulness of 3D surface roughness parameters for nondestructive evaluation of pull-off adhesion of concrete layers. Construction and Building Materials, 2015, 84, 111-120.	3.2	82
25	The Influence of an Additive in the form of Selected Nanoparticles on the Physical and Mechanical Characteristics of Self-Compacting Concrete. Procedia Engineering, 2015, 111, 601-606.	1.2	16
26	STRESS FAILURE OF CEMENT CONCRETES UNDER COMPRESSION â€" SYNTHESIS OF KNOWLEDGE, CONCLUSIONS. Journal of Civil Engineering and Management, 2014, 21, 1-10.	1.9	3
27	NEW NONDESTRUCTIVE WAY OF IDENTIFYING THE VALUES OF PULL-OFF ADHESION BETWEEN CONCRETE LAYERS IN FLOORS. Journal of Civil Engineering and Management, 2014, 20, 561-569.	1.9	44
28	Neural Prediction of the Pull-Off Adhesion of the Concrete Layers in Floors on the Basis of Nondestructive Tests. Procedia Engineering, 2013, 57, 986-995.	1,2	20
29	METHODOLOGY OF NONDESTRUCTIVE IDENTIFICATION OF DEFECTIVE CONCRETE ZONES IN UNILATERALLY ACCESSIBLE MASSIVE MEMBERS. Journal of Civil Engineering and Management, 2013, 19, 775-786.	1.9	29
30	Nondestructive identification of delaminations in concrete floor toppings with acoustic methods. Automation in Construction, 2011, 20, 799-807.	4.8	88
31	New technique of nondestructive assessment of concrete strength using artificial intelligence. NDT and E International, 2005, 38, 251-259.	1.7	62
32	APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO DETERMINE CONCRETE COMPRESSIVE STRENGTH BASED ON NONâ€DESTRUCTIVE TESTS. Journal of Civil Engineering and Management, 2005, 11, 23-32.	1.9	37
33	The Use of a 3D Scanner for Evaluating the Morphology of a Sandblasted Concrete Surface. Key Engineering Materials, 0, 662, 193-196.	0.4	4