Martha Cobo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/997507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru,"Na2Oâ€ / Al2O3 Dual Functional Material. Applied Surface Science, 2019, 479, 25-30.	3.1	135
2	Discovering relationships and forecasting PM10 and PM2.5 concentrations in BogotÃ _i , Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmospheric Pollution Research, 2018, 9, 912-922.	1.8	104
3	Characterization of fly ash from a hazardous waste incinerator in Medellin, Colombia. Journal of Hazardous Materials, 2009, 168, 1223-1232.	6.5	88
4	Techno-economic evaluation of indirect carbonation for CO2 emissions capture in cement industry: A system dynamics approach. Journal of Cleaner Production, 2020, 263, 121457.	4.6	78
5	Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS. Applied Surface Science, 2020, 533, 147469.	3.1	61
6	Impact of bioethanol impurities on steam reforming for hydrogen production: A review. International Journal of Hydrogen Energy, 2020, 45, 11923-11942.	3.8	61
7	Steam reforming of ethanol over bimetallic RhPt/La2O3: Long-term stability under favorable reaction conditions. International Journal of Hydrogen Energy, 2013, 38, 5580-5593.	3.8	53
8	Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1860-1879.	1.9	38
9	Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 catalyst: Synergistic effect of the Si:Ce ratio on the catalyst performance. Applied Catalysis A: General, 2016, 523, 283-293.	2.2	38
10	The Effect of NaOH on the Liquid-Phase Hydrodechlorination of Dioxins over Pd/γ-Al ₂ O ₃ . Journal of Physical Chemistry A, 2008, 112, 8715-8722.	1.1	37
11	Total suspended particulate (TSP), polychlorinated dibenzodioxin (PCDD) and polychlorinated dibenzofuran (PCDF) emissions from medical waste incinerators in Antioquia, Colombia. Chemosphere, 2008, 73, S137-S142.	4.2	37
12	Hydrogen Production by Steam Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO2, ZrO2, and La2O3 as Supports. Catalysts, 2015, 5, 1872-1896.	1.6	36
13	Controlling sugarcane press-mud fermentation to increase bioethanol steam reforming for hydrogen production. Waste Management, 2019, 98, 1-13.	3.7	27
14	Response Surface Methodology and Aspen Plus Integration for the Simulation of the Catalytic Steam Reforming of Ethanol. Catalysts, 2017, 7, 15.	1.6	25
15	Catalytic hydrodechlorination of trichloroethylene in a novel NaOH/2-propanol/methanol/water system on ceria-supported Pd and Rh catalysts. Journal of Environmental Management, 2015, 158, 1-10.	3.8	23
16	Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. Journal of Biomaterials Applications, 2016, 31, 708-720.	1.2	22
17	Hydrogen from glucose: A combined study of glucose fermentation, bioethanol purification, and catalytic steam reforming. International Journal of Hydrogen Energy, 2016, 41, 5640-5651.	3.8	22
18	Fuel-cell grade hydrogen production by coupling steam reforming of ethanol and carbon monoxide removal. International Journal of Hydrogen Energy, 2018, 43, 17216-17229.	3.8	21

Martha Cobo

#	Article	IF	CITATIONS
19	Effect of the reducing agent on the hydrodechlorination of dioxins over 2wt.% Pd/γ-Al2O3. Applied Catalysis B: Environmental, 2009, 92, 367-376.	10.8	20
20	Bioethanol steam reforming over monoliths washcoated with RhPt/CeO2–SiO2: The use of residual biomass to stably produce syngas. International Journal of Hydrogen Energy, 2021, 46, 4007-4018.	3.8	20
21	Polycyclic aromatic hydrocarbons (PAHs) in human breast milk from Colombia: Spatial occurrence, sources and probabilistic risk assessment. Environmental Research, 2022, 204, 111981.	3.7	19
22	Liquid phase dioxin hydrodechlorination over Pd/γ–Al2O3. Catalysis Today, 2008, 133-135, 509-519.	2.2	18
23	Environmental variation of PCDD/Fs and dl-PCBs in two tropical Andean Colombian cities using passive samplers. Science of the Total Environment, 2016, 568, 614-623.	3.9	16
24	Baseline levels of dioxin and furan emissions from waste thermal treatment in Colombia. Chemosphere, 2008, 73, S171-S175.	4.2	15
25	Thermodynamic and economic assessment of the production of light olefins from bioethanol. Journal of Environmental Chemical Engineering, 2017, 5, 1554-1564.	3.3	15
26	Kinetic modeling of polymer-grade ethylene production by diluted ethanol dehydration over H-ZSM-5 for industrial design. Journal of Environmental Chemical Engineering, 2018, 6, 6165-6174.	3.3	15
27	Kinetics of the Catalytic Thermal Degradation of Sugarcane Residual Biomass Over Rh-Pt/CeO2-SiO2 for Syngas Production. Catalysts, 2020, 10, 508.	1.6	14
28	Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector. Renewable Energy, 2021, 175, 825-839.	4.3	13
29	Integration of steam gasification and catalytic reforming of lignocellulosic biomass as a strategy to improve syngas quality and pollutants removal. Waste Management, 2022, 147, 48-59.	3.7	13
30	Effect of pretreatment on the ethanol and fusel alcohol production during fermentation of sugarcane press-mud. Biochemical Engineering Journal, 2020, 161, 107668.	1.8	12
31	Dioxin emissions from thermal waste management in MedellÃn, Colombia: Present regulation status and preliminary results. Waste Management, 2007, 27, 1603-1610.	3.7	11
32	Catalytic hydrodechlorination of trichloroethylene with 2-propanol over Pd/Al2O3. Catalysis Today, 2011, 172, 78-83.	2.2	11
33	CO2 capture via barium carbonate formation after its absorption with ammonia in a pilot scale column. Chemical Engineering Journal, 2014, 254, 220-229.	6.6	11
34	Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation. Energies, 2017, 10, 2112.	1.6	11
35	Hydrogen purification of actual syngas streams for energy applications: Au-Cu supported over nano-shaped CeO2 as stable catalysts for the carbon monoxide removal. Applied Catalysis A: General, 2020, 598, 117568.	2.2	11
36	Single and Dual Metal Oxides as Promising Supports for Carbon Monoxide Removal from an Actual Syngas: The Crucial Role of Support on the Selectivity of the Au–Cu System. Catalysts, 2019, 9, 852.	1.6	10

Martha Cobo

#	Article	IF	CITATIONS
37	An Efficient Acetalization Method for Biomassâ€Derived Furfural with Ethanol Using γâ€Al ₂ O ₃ ‣upported Catalysts. ChemistrySelect, 2020, 5, 3458-3470.	0.7	9
38	Washcoated Pd/Al2O3 monoliths for the liquid phase hydrodechlorination of dioxins. Applied Catalysis A: General, 2012, 445-446, 83-91.	2.2	8
39	Monoliths washcoated with AuCu catalysts for CO removal in an ethanol fuel processor: Effect of CeO2–SiO2 dual support on the catalytic performance and reactor cost. International Journal of Hydrogen Energy, 2021, 46, 2166-2181.	3.8	8
40	Biomass Potential for Producing Power via Green Hydrogen. Energies, 2021, 14, 8366.	1.6	8
41	Proposal of an open-source computational toolbox for solving PDEs in the context of chemical reaction engineering using FEniCS and complementary components. Heliyon, 2021, 7, e05772.	1.4	4
42	Bioethanol Production from Sugarcane Press-Mud: Assessment of the Fermentation Conditions to Reduce Fusel Alcohol. Fermentation, 2021, 7, 194.	1.4	4
43	Effect of photocatalytic pretreatment of potato starch for bioethanol production using Saccharomyces cerevisiae during simultaneous saccharification-fermentation (SSF). DYNA (Colombia), 2019, 86, 251-256.	0.2	2
44	Life cycle inventory data for power production from sugarcane press-mud. Data in Brief, 2021, 37, 107194.	0.5	2
45	ADVANCES IN ETHANOL REFORMING FOR THE PRODUCTION OF HYDROGEN. Quimica Nova, 2014, , .	0.3	2
46	Purificación de dióxido de carbono emitido en las plantas de gas natural. Ciencia En Desarrollo, 2018, 9, .	0.1	0