Jonathan A G Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/99746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indole-containing arene-ruthenium complexes with broad spectrum activity against antibiotic-resistant bacteria. Current Research in Microbial Sciences, 2022, 3, 100099.	1.4	6
2	Drug Susceptibility Screening Using In Vitro Models of Hypoxic Non-Replicating Persistent Mycobacteria. Methods in Molecular Biology, 2021, 2314, 247-260.	0.4	1
3	In vitro efficacy of relebactam versus avibactam against Mycobacterium abscessus complex. Cell Surface, 2021, 7, 100064.	1.5	3
4	Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms, 2021, 9, 2330.	1.6	8
5	Clinical Significance of Manuka and Medical-Grade Honey for Antibiotic-Resistant Infections: A Systematic Review. Antibiotics, 2020, 9, 766.	1.5	31
6	Development of a novel secondary phenotypic screen to identify hits within the mycobacterial protein synthesis pipeline. FASEB BioAdvances, 2020, 2, 600-612.	1.3	2
7	Effect of Amoxicillin in combination with Imipenem-Relebactam against Mycobacterium abscessus. Scientific Reports, 2020, 10, 928.	1.6	35
8	Changing the Rules of TB-Drug Discovery. Journal of Medicinal Chemistry, 2019, 62, 10583-10585.	2.9	4
9	Mycobacterium abscessus: Environmental Bacterium Turned Clinical Nightmare. Microorganisms, 2019, 7, 90.	1.6	103
10	Dissecting the Antimicrobial Composition of Honey. Antibiotics, 2019, 8, 251.	1.5	107
11	Crystal structure of <i>Mycobacterium tuberculosis</i> FadB2 implicated in mycobacterial β-oxidation. Acta Crystallographica Section D: Structural Biology, 2019, 75, 101-108.	1.1	7
12	Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets. Scientific Reports, 2018, 8, 3939.	1.6	30
13	Modelling a Silent Epidemic: A Review of the In Vitro Models of Latent Tuberculosis. Pathogens, 2018, 7, 88.	1.2	30
14	The â€~Antibiotic Apocalypse' – Scaremongering or Scientific Reporting?. Trends in Microbiology, 2017, 25, 167-169.	3.5	17
15	Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface. Scientific Reports, 2017, 7, 9430.	1.6	48
16	Novel inhibitors of Mycobacterium tuberculosis GuaB2 identified by a target based high-throughput phenotypic screen. Scientific Reports, 2016, 6, 38986.	1.6	22
17	Drug development: The cell wall as a drug target. International Journal of Mycobacteriology, 2016, 5, S156.	0.3	1
18	THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria. Nature Microbiology, 2016, 1, 15006.	5.9	57

Jonathan A G Cox

#	Article	IF	CITATIONS
19	Identification of KasA as the cellular target of an anti-tubercular scaffold. Nature Communications, 2016, 7, 12581.	5.8	72
20	Mycobacterial Dihydrofolate Reductase Inhibitors Identified Using Chemogenomic Methods and In Vitro Validation. PLoS ONE, 2015, 10, e0121492.	1.1	40
21	Assembly of the Mycobacterial Cell Wall. Annual Review of Microbiology, 2015, 69, 405-423.	2.9	280
22	Biochemical and Structural Characterization of Mycobacterial Aspartyl-tRNA Synthetase AspS, a Promising TB Drug Target. PLoS ONE, 2014, 9, e113568.	1.1	31
23	Identification of Novel Imidazo[1,2-a]pyridine Inhibitors Targeting M. tuberculosis QcrB. PLoS ONE, 2012, 7, e52951.	1.1	162