Andrew C Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9972/publications.pdf Version: 2024-02-01

ANDREW C SMITH

#	Article	IF	CITATIONS
1	The influence of conventional T ₂ MRI indices in predicting who will walk outside one year after spinal cord injury. Journal of Spinal Cord Medicine, 2023, 46, 501-507.	1.4	9
2	Lateral Corticospinal Tract and Dorsal Column Damage: Predictive Relationships With Motor and Sensory Scores at Discharge From Acute Rehabilitation After Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2022, 103, 62-68.	0.9	5
3	Spinal Cord Tissue Bridges Validation Study: Predictive Relationships With Sensory Scores Following Cervical Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation, 2022, 28, 111-115.	1.8	3
4	Spinal cord imaging markers and recovery of standing with epidural stimulation in individuals with clinically motor complete spinal cord injury. Experimental Brain Research, 2022, 240, 279-288.	1.5	12
5	Transcutaneous Electrical Spinal Cord Stimulation to Promote Recovery in Chronic Spinal Cord Injury. Frontiers in Rehabilitation Sciences, 2022, 2, .	1.2	7
6	Utilization of Mid-Thigh Magnetic Resonance Imaging to Predict Lean Body Mass and Knee Extensor Strength in Obese Adults. Frontiers in Rehabilitation Sciences, 2022, 3, .	1.2	0
7	Axial MRI biomarkers of spinal cord damage to predict future walking and motor function: a retrospective study. Spinal Cord, 2021, 59, 693-699.	1.9	15
8	Fatty infiltration in cervical flexors and extensors in patients with degenerative cervical myelopathy using a multi-muscle segmentation model. PLoS ONE, 2021, 16, e0253863.	2.5	9
9	Multi-muscle deep learning segmentation to automate the quantification of muscle fat infiltration in cervical spine conditions. Scientific Reports, 2021, 11, 16567.	3.3	18
10	Midsagittal tissue bridges are associated with walking ability in incomplete spinal cord injury: A magnetic resonance imaging case series. Journal of Spinal Cord Medicine, 2020, 43, 268-271.	1.4	24
11	Spinal Cord Imaging Markers and Recovery of Volitional Leg Movement With Spinal Cord Epidural Stimulation in Individuals With Clinically Motor Complete Spinal Cord Injury. Frontiers in Systems Neuroscience, 2020, 14, 559313.	2.5	25
12	Confirming the geography of fatty infiltration in the deep cervical extensor muscles in whiplash recovery. Scientific Reports, 2020, 10, 11471.	3.3	18
13	Muscle fat infiltration following whiplash: A computed tomography and magnetic resonance imaging comparison. PLoS ONE, 2020, 15, e0234061.	2.5	20
14	The effect of manual therapy on gastrocnemius muscle stiffness in healthy individuals. Foot, 2019, 38, 70-75.	1.1	14
15	Deep Learning Convolutional Neural Networks for the AutomaticÂQuantification ofÂMuscle Fat Infiltration Following Whiplash Injury. Scientific Reports, 2019, 9, 7973.	3.3	43
16	Establishing the inter-rater reliability of spinal cord damage manual measurement using magnetic resonance imaging. Spinal Cord Series and Cases, 2019, 5, 20.	0.6	10
17	Motor vehicle crash reconstruction: Does it relate to the heterogeneity of whiplash recovery?. PLoS ONE, 2019, 14, e0225686.	2.5	5
18	Lateral Corticospinal Tract Damage Correlates With Motor Output in Incomplete Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2018, 99, 660-666.	0.9	28

ANDREW C SMITH

#	Article	IF	CITATIONS
19	Advancing imaging technologies for patients with spinal pain: with a focus on whiplash injury. Spine Journal, 2018, 18, 1489-1497.	1.3	6
20	Short- and long-term reproducibility of diffusion-weighted magnetic resonance imaging of lower extremity musculature in asymptomatic individuals and a comparison to individuals with spinal cord injury. BMC Musculoskeletal Disorders, 2018, 19, 433.	1.9	2
21	Fatty infiltration of the cervical multifidus musculature and their clinical correlates in spondylotic myelopathy. Journal of Clinical Neuroscience, 2018, 57, 208-213.	1.5	28
22	The Relationship Between Volitional Activation and Muscle Properties in Incomplete Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation, 2018, 24, 1-5.	1.8	4
23	Lower extremity muscle structure in incomplete spinal cord injury: a comparison between ultrasonography and magnetic resonance imaging. Spinal Cord Series and Cases, 2017, 3, 17004.	0.6	7
24	A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function. Neural Plasticity, 2016, 2016, 1-20.	2.2	57
25	MRI measures of fat infiltration in the lower extremities following motor incomplete spinal cord injury: Reliability and potential implications for muscle activation. , 2016, 2016, 5451-5456.		9
26	Potential associations between chronic whiplash and incomplete spinal cord injury. Spinal Cord Series and Cases, 2015, 1, .	0.6	27
27	Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. Journal of Neurophysiology, 2015, 113, 2447-2460.	1.8	17
28	Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury. Experimental Brain Research, 2015, 233, 89-103.	1.5	18
29	Muscle–fat MRI: 1.5 tesla and 3.0 tesla versus histology. Muscle and Nerve, 2014, 50, 170-176.	2.2	81
30	Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury. Journal of Neurophysiology, 2014, 112, 2164-2175.	1.8	25
31	Letter to the editor regarding Smuck M, Cristostomo RA, Demirjian R, etÂal. Morphologic change in the lumbar spine after lumbar medial branch radiofrequency neurotomy: a quantitative radiological study Spine Journal, 2014, 14, 1088-1089.	1.3	2
32	Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans. Clinical Neurophysiology, 2013, 124, 557-564.	1.5	18
33	Effects of mechanical vibration of the foot sole and ankle tendons on cutaneomuscular responses in man. Neuroscience Letters, 2013, 545, 123-126.	2.1	4
34	Corticospinal Reorganization after Locomotor Training in a Person with Motor Incomplete Paraplegia. BioMed Research International, 2013, 2013, 1-8.	1.9	17
35	Soleus H-reflex phase-dependent modulation is preserved during stepping within a robotic exoskeleton. Clinical Neurophysiology, 2011, 122, 1396-1404.	1.5	27