Maura N Laus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/997170/publications.pdf

Version: 2024-02-01

33	796	16 h-index	28
papers	citations		g-index
33	33	33	981
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Changes in Antioxidant Defence System in Durum Wheat under Hyperosmotic Stress: A Concise Overview. Plants, 2022, 11, 98.	1.6	9
2	Bioactive Compounds and Antioxidant Capacity in Anthocyanin-Rich Carrots: A Comparison between the Black Carrot and the Apulian Landrace "Polignano―Carrot. Plants, 2021, 10, 564.	1.6	19
3	Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review. Plants, 2021, 10, 2599.	1.6	26
4	First Evidence of a Protective Effect of Plant Bioactive Compounds against H2O2-Induced Aconitase Damage in Durum Wheat Mitochondria. Antioxidants, 2020, 9, 1256.	2.2	5
5	Antioxidant/Oxidant Balance as a novel approach to evaluate the effect on serum of long-term intake of plant antioxidant-rich foods. Journal of Functional Foods, 2018, 40, 778-784.	1.6	17
6	Shades of red: Comparative study on supercritical CO 2 extraction of lycopene-rich oleoresins from gac, tomato and watermelon fruits and effect of the α-cyclodextrin clathrated extracts on cultured lung adenocarcinoma cells' viability. Journal of Food Composition and Analysis, 2018, 65, 23-32.	1.9	44
7	Assessment of Antioxidant Capacity and Putative Healthy Effects of Natural Plant Products Using Soybean Lipoxygenase-Based Methods. An Overview. Molecules, 2018, 23, 3244.	1.7	15
8	Measuring Activity of Native Plant Sirtuins - The Wheat Mitochondrial Model. Frontiers in Plant Science, 2018, 9, 961.	1.7	7
9	Different effectiveness of two pastas supplemented with either lipophilic or hydrophilic/phenolic antioxidants in affecting serum as evaluated by the novel Antioxidant/Oxidant Balance approach. Food Chemistry, 2017, 221, 278-288.	4.2	25
10	Antioxidant capacity, phenolic and vitamin C contents of quinoa (Chenopodium quinoa Willd.) as affected by sprouting and storage conditions. Italian Journal of Agronomy, 2017, 12, .	0.4	6
11	The soybean lipoxygenase-fluorescein reaction may be used to assess antioxidant capacity of phytochemicals and serum. Analytical Methods, 2016, 8, 4354-4362.	1.3	12
12	Serum antioxidant capacity and peroxide level of seven healthy subjects after consumption of different foods. Data in Brief, 2016, 9, 818-822.	0.5	4
13	Antioxidant capacity of durum wheat large flour particles may be evaluated by QUENCHER _{ABTS} assay by adopting a proper calculation mode. Cereal Research Communications, 2015, 43, 682-691.	0.8	5
14	Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondriaâ€"An Amazing Defense Tool Against Hyperosmotic Stress. Frontiers in Plant Science, 2015, 6, 1072.	1.7	26
15	Evaluation of Phenolic Antioxidant Capacity in Grains of Modern and Old Durum Wheat Genotypes by the Novel QUENCHERABTS Approach. Plant Foods for Human Nutrition, 2015, 70, 207-214.	1.4	17
16	Transport Pathwaysâ€"Proton Motive Force Interrelationship in Durum Wheat Mitochondria. International Journal of Molecular Sciences, 2014, 15, 8186-8215.	1.8	12
17	An improved spectrophotometric phospholipase A2 assay using 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine as substrate and lipoxygenase as coupled enzyme. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 369-376.	0.9	2
18	The existence of phospholipase A2 activity in plant mitochondria and its activation by hyperosmotic stress in durum wheat (Triticum durum Desf.). Plant Science, 2013, 199-200, 91-102.	1.7	26

#	Article	IF	CITATIONS
19	A new simple fluorimetric method to assay cytosolic ATP content: application to durum wheat seedlings to assess modulation of mitochondrial potassium channel and uncoupling protein activity under hyperosmotic stress. Biologia (Poland), 2013, 68, 421-432.	0.8	9
20	Effects of Milling-process and pasta making on ABTS•+scavenging activity of hydrophilic and lipophilic extracts of durum wheat varieties. Cereal Research Communications, 2013, 41, 482-492.	0.8	2
21	The uniqueness of the plant mitochondrial potassium channel. BMB Reports, 2013, 46, 391-397.	1.1	11
22	Antioxidant Activity of Free and Bound Compounds in Quinoa (<i>Chenopodium quinoa</i> Willd.) Seeds in Comparison with Durum Wheat and Emmer. Journal of Food Science, 2012, 77, C1150-5.	1.5	34
23	Dissection of antioxidant activity of durum wheat (Triticum durum Desf.) grains as evaluated by the new LOX/RNO method. Journal of Cereal Science, 2012, 56, 214-222.	1.8	19
24	Potassium channelâ€oxidative phosphorylation relationship in durum wheat mitochondria from control and hyperosmoticâ€stressed seedlings. Plant, Cell and Environment, 2011, 34, 2093-2108.	2.8	16
25	Activation of the plant mitochondrial potassium channel by free fatty acids and acyl-CoA esters: a possible defence mechanism in the response to hyperosmotic stress. Journal of Experimental Botany, 2011, 62, 141-154.	2.4	35
26	Mitochondrial proline oxidation is affected by hyperosmotic stress in durum wheat seedlings. Annals of Applied Biology, 2010, 157, 1-11.	1.3	24
27	New Tool To Evaluate a Comprehensive Antioxidant Activity in Food Extracts: Bleaching of 4-Nitroso- <i>N</i> , <i>N</i> ,dimethylaniline Catalyzed by Soybean Lipoxygenase-1. Journal of Agricultural and Food Chemistry, 2009, 57, 9682-9692.	2.4	20
28	Plant Inner Membrane Anion Channel (PIMAC) Function in Plant Mitochondria. Plant and Cell Physiology, 2008, 49, 1039-1055.	1.5	35
29	Possible plant mitochondria involvement in cell adaptation to drought stress: A case study: durum wheat mitochondria. Journal of Experimental Botany, 2006, 58, 195-210.	2.4	172
30	The uncoupling protein and the potassium channel are activated by hyperosmotic stress in mitochondria from durum wheat seedlings. Plant, Cell and Environment, 2004, 27, 437-448.	2.8	43
31	Reactive oxygen species inhibit the succinate oxidation-supported generation of membrane potential in wheat mitochondria. FEBS Letters, 2002, 516, 15-19.	1.3	32
32	Alternative Oxidase in Durum Wheat Mitochondria. Activation by Pyruvate, Hydroxypyruvate and Glyoxylate and Physiological Role. Plant and Cell Physiology, 2001, 42, 1373-1382.	1.5	66
33	Genome-Wide Expression Analysis of Glyoxalase I Genes Under Hyperosmotic Stress and Existence of a Stress-Responsive Mitochondrial Glyoxalase I Activity in Durum Wheat (Triticum durum Desf.). Frontiers in Plant Science, 0, 13, .	1.7	1