Baoshan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/997049/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption. Nano-Micro Letters, 2019, 11, 24.	27.0	421
2	Coin-like α-Fe ₂ O ₃ @CoFe ₂ O ₄ Core–Shell Composites with Excellent Electromagnetic Absorption Performance. ACS Applied Materials & Interfaces, 2015, 7, 4744-4750.	8.0	326
3	Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities. Advanced Materials, 2022, 34, e2106195.	21.0	307
4	A simple hydrothermal process to grow MoS ₂ nanosheets with excellent dielectric loss and microwave absorption performance. Journal of Materials Chemistry C, 2016, 4, 6816-6821.	5.5	233
5	Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon, 2021, 173, 501-511.	10.3	164
6	Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon, 2016, 110, 130-137.	10.3	149
7	Novel nanoporous carbon derived from metal–organic frameworks with tunable electromagnetic wave absorption capabilities. Inorganic Chemistry Frontiers, 2016, 3, 1516-1526.	6.0	110
8	Achieving Sustainable Ultralight Electromagnetic Absorber from Flour by Turning Surface Morphology of Nanoporous Carbon. ACS Sustainable Chemistry and Engineering, 2018, 6, 15850-15857.	6.7	102
9	CoxFey@C Composites with Tunable Atomic Ratios for Excellent Electromagnetic Absorption Properties. Scientific Reports, 2015, 5, 18249.	3.3	96
10	Tailoring the input impedance of FeCo/C composites with efficient broadband absorption. Dalton Transactions, 2017, 46, 14926-14933.	3.3	78
11	Multiple Interfaces Structure Derived from Metal-Organic Frameworks for Excellent Electromagnetic Wave Absorption. Particle and Particle Systems Characterization, 2017, 34, 1700006.	2.3	74
12	Review: Recent process in the design of carbon-based nanostructures with optimized electromagnetic properties. Journal of Alloys and Compounds, 2018, 749, 887-899.	5.5	74
13	Controlled synthesis and microwave absorption properties of Ni0.6Zn0.4Fe2O4/PANI composite via an in-situ polymerization process. Journal of Magnetism and Magnetic Materials, 2015, 377, 52-58.	2.3	56
14	Mesoporous carbon hollow spheres as a light weight microwave absorbing material showing modulating dielectric loss. Dalton Transactions, 2019, 48, 10145-10150.	3.3	46
15	Nano Bimetallic@Carbon Layer on Porous Carbon Nanofibers with Multiple Interfaces for Microwave Absorption Applications. ACS Applied Nano Materials, 2018, 1, 5712-5721.	5.0	45
16	PANI/FeCo@C composite microspheres with broadband microwave absorption performance. Composites Science and Technology, 2022, 218, 109143.	7.8	43
17	A biomass derived porous carbon for broadband and lightweight microwave absorption. Scientific Reports, 2019, 9, 18617.	3.3	42
18	Facile synthesis of porous coin-like iron and its excellent electromagnetic absorption performance. RSC Advances, 2015, 5, 25936-25941.	3.6	35

BAOSHAN ZHANG

#	Article	IF	CITATIONS
19	Nanofiber network with adjustable nanostructure controlled by PVP content for an excellent microwave absorption. Scientific Reports, 2019, 9, 4271.	3.3	34
20	A proposed electron transmission mechanism between Fe ³⁺ /Co ²⁺ and Fe ³⁺ /Fe ³⁺ in the spinel structure and its practical evidence in quaternary Fe _{0.5} Ni _{0.5} Co ₂ S ₄ . Journal of Materials Chemistry C, 2016, 4, 5476-5482.	5.5	33
21	Influence of the magnetic field annealing on the extrinsic damping of FeCoB soft magnetic films. Journal of Applied Physics, 2010, 108, .	2.5	29
22	Strong electric wave response derived from the hybrid of lotus roots-like composites with tunable permittivity. Scientific Reports, 2017, 7, 9462.	3.3	27
23	Constructing multi-interface Mo ₂ C/Co@C nanorods for a microwave response based on a double attenuation mechanism. Dalton Transactions, 2018, 47, 14767-14773.	3.3	26
24	Core–shell hybrid nanowires with Co nanoparticles wrapped in N-doped porous carbon for lightweight microwave absorption. Dalton Transactions, 2019, 48, 15263-15271.	3.3	21
25	Interfacial polarizations induced by incorporating traditional perovskites into reduced graphene oxide (RGO) for strong microwave response. Dalton Transactions, 2019, 48, 2359-2366.	3.3	16
26	Extending effective microwave absorbing bandwidth of CoNi bimetallic alloy derived from binary hydroxides. Scientific Reports, 2020, 10, 16044.	3.3	12
27	High-frequency magnetodielectric response in yttrium iron garnet at room temperature. Journal of Applied Physics, 2018, 123, 205109.	2.5	5
28	Tunable storage states' transition in slotted ferromagnetic nanorings. Journal of Applied Physics, 2017, 121, .	2.5	3
29	Accurate manipulation of single skyrmion by probe ring. Journal of Applied Physics, 2020, 128, .	2.5	3
30	Research of the impact of coupling between unit cells on performance of linear-to-circular polarization conversion metamaterial with half transmission and half reflection. International Journal of Modern Physics B, 2018, 32, 1850124.	2.0	0
31	Robust write operation in Co slotted nanoring. Journal of Applied Physics, 2019, 125, 223904.	2.5	0