Chuanming Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/996612/publications.pdf

Version: 2024-02-01

25 papers

782

686830 13 h-index 610482 24 g-index

25 all docs

 $\begin{array}{c} 25 \\ \text{docs citations} \end{array}$

25 times ranked

956 citing authors

#	Article	IF	CITATIONS
1	Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update. Journal of the American Society of Nephrology: JASN, 2017, 28, 1040-1049.	3.0	176
2	Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin†angiotensin system. Journal of Hypertension, 2017, 35, 1899-1908.	0.3	128
3	Soluble (pro)renin receptor via \hat{l}^2 -catenin enhances urine concentration capability as a target of liver X receptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1898-906.	3.3	83
4	Activation of Renal (Pro)Renin Receptor Contributes to High Fructose-Induced Salt Sensitivity. Hypertension, 2017, 69, 339-348.	1.3	66
5	Mst1 overexpression inhibited the growth of human non-small cell lung cancer in vitro and in vivo. Cancer Gene Therapy, 2013, 20, 453-460.	2.2	46
6	(Pro)renin receptor mediates albumin-induced cellular responses: role of site-1 protease-derived soluble (pro)renin receptor in renal epithelial cells. American Journal of Physiology - Cell Physiology, 2017, 313, C632-C643.	2.1	35
7	ELABELA antagonizes intrarenal renin-angiotensin system to lower blood pressure and protects against renal injury. American Journal of Physiology - Renal Physiology, 2020, 318, F1122-F1135.	1.3	35
8	Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. American Journal of Physiology - Renal Physiology, 2018, 315, F1759-F1768.	1.3	27
9	Site-1 protease–derived soluble (pro)renin receptor targets vasopressin receptor 2 to enhance urine concentrating capability. JCI Insight, 2019, 4, .	2.3	24
10	The Elabela in hypertension, cardiovascular disease, renal disease, and preeclampsia: an update. Journal of Hypertension, 2021, 39, 12-22.	0.3	22
11	Soluble (pro)renin receptor treats metabolic syndrome in mice with diet-induced obesity via interaction with PPAR \hat{I}^3 . JCI Insight, 2020, 5, .	2.3	20
12	Soluble (pro)renin receptor regulation of ENaC involved in aldosterone signaling in cultured collecting duct cells. American Journal of Physiology - Renal Physiology, 2020, 318, F817-F825.	1.3	18
13	(Pro)Renin receptor regulates potassium homeostasis through a local mechanism. American Journal of Physiology - Renal Physiology, 2017, 313, F641-F656.	1.3	15
14	(Pro)renin receptor decoy peptide PRO20 protects against adriamycin-induced nephropathy by targeting the intrarenal renin-angiotensin system. American Journal of Physiology - Renal Physiology, 2020, 319, F930-F940.	1.3	15
15	High potassium promotes mutual interaction between (pro)renin receptor and the local renin-angiotensin-aldosterone system in rat inner medullary collecting duct cells. American Journal of Physiology - Cell Physiology, 2016, 311, C686-C695.	2.1	12
16	NF- \hat{l}° B-dependent upregulation of (pro)renin receptor mediates high-NaCl-induced apoptosis in mouse inner medullary collecting duct cells. American Journal of Physiology - Cell Physiology, 2017, 313, C612-C620.	2.1	12
17	The Soluble (Pro)Renin Receptor in Health and Diseases: Foe or Friend?. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 251-261.	1.3	8
18	The interaction partners of (pro)renin receptor in the distal nephron. FASEB Journal, 2020, 34, 14136-14149.	0.2	7

#	Article	IF	CITATIONS
19	Cardiovascular aspects of the (pro)renin receptor: Function and significance. FASEB Journal, 2022, 36, e22237.	0.2	7
20	Na $\langle \sup \rangle + \langle \sup \rangle$ -Retaining Action of COX-2 (Cyclooxygenase-2)/EP $\langle \sup \rangle 1 \langle \sup \rangle$ Pathway in the Collecting Duct via Activation of Intrarenal Renin-Angiotensin-Aldosterone System and Epithelial Sodium Channel. Hypertension, 2022, 79, 1190-1202.	1.3	7
21	Diuretic Action of Apelin-13 Mediated by Inhibiting cAMP/PKA/sPRR Pathway. Frontiers in Physiology, 2021, 12, 642274.	1.3	6
22	Soluble (Pro)Renin Receptor as a Negative Regulator of NCC (Na ⁺ -Cl [–]) Tj ETQq0	0 0 rgBT /0	Overlock 10 Tf
23	Pathophysiological mechanisms of hypertension development induced by fructose consumption. Food and Function, 2022, 13, 1702-1717.	2.1	6
24	Foe and friend in the COVID-19-associated acute kidney injury: an insight on intrarenal renin-angiotensin system. Acta Biochimica Et Biophysica Sinica, 2022, 54, 1-11.	0.9	1
25	Return of the (Pro)renin Receptor: A Vacuolar H ⁺ -ATPase and Just not a Receptor of (Pro)renin/Renin?. Exploratory Research and Hypothesis in Medicine, 2022, 000, 000-000.	0.1	O