Samuel Legros

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/996299/samuel-legros-publications-by-year.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24	1,153	17	25
papers	citations	h-index	g-index
25	1,274 ext. citations	7.9	3.97
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
24	Contrasted fate of zinc sulfide nanoparticles in soil revealed by a combination of X-ray absorption spectroscopy, diffusive gradient in thin films and isotope tracing. <i>Environmental Pollution</i> , 2022 , 292, 118414	9.3	O
23	Redistribution of Zn towards light-density fractions and potentially mobile phases in a long-term manure-amended clayey soil. <i>Geoderma</i> , 2021 , 394, 115044	6.7	1
22	Zinc Speciation in Organic Waste Drives Its Fate in Amended Soils. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 12034-12041	10.3	6
21	Drastic Change in Zinc Speciation during Anaerobic Digestion and Composting: Instability of Nanosized Zinc Sulfide. <i>Environmental Science & Environmental Science & Environme</i>	10.3	19
20	Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles. <i>Environmental Pollution</i> , 2017 , 222, 495-503	9.3	12
19	Anaerobic Digestion Alters Copper and Zinc Speciation. <i>Environmental Science & Environmental Science </i>	10.3	22
18	Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles. <i>Environmental Science & Environmental Sc</i>	10.3	35
17	Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant. <i>Spectrochimica Acta, Part B: Atomic Spectroscopy</i> , 2016 , 119, 17-24	3.1	39
16	Increased zinc and copper availability in organic waste amended soil potentially involving distinct release mechanisms. <i>Environmental Pollution</i> , 2016 , 212, 299-306	9.3	40
15	First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS. <i>Journal of Analytical Atomic</i>	3.7	60
14	Spectrometry, 2015 , 30, 1286-1296 Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. <i>Journal of Hazardous Materials</i> , 2014 , 273, 17-26	12.8	152
13	Zinc fate in animal husbandry systems. <i>Metallomics</i> , 2014 , 6, 1999-2009	4.5	15
12	Elemental recoveries for metal oxide nanoparticles analysed by direct injection ICP-MS: influence of particle size, agglomeration state and sample matrix. <i>Journal of Analytical Atomic Spectrometry</i> , 2014 , 29, 2294-2301	3.7	9
11	Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. <i>Environmental Science & Environmental Scie</i>	10.3	76
10	Fate and behaviour of Cu and Zn from pig slurry spreading in a tropical waterBoilplant system. Agriculture, Ecosystems and Environment, 2013 , 164, 70-79	5.7	36
9	Validation of methods for the detection and quantification of engineered nanoparticles in food. <i>Food Chemistry</i> , 2013 , 138, 1959-66	8.5	79
8	Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles. <i>Journal of Chromatography A</i> , 2013 , 1272, 116-25	4.5	78

LIST OF PUBLICATIONS

7	Combining spatially resolved hydrochemical data with in-vitro nanoparticle stability testing: assessing environmental behavior of functionalized gold nanoparticles on a continental scale. <i>Environment International</i> , 2013 , 59, 53-62	12.9	14
6	Characterisation of organic matter from organo-mineral complexes in an Andosol from Reunion Island. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 99, 92-100	6	20
5	The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. <i>Aquatic Toxicology</i> , 2012 , 118-119, 1-8	5.1	66
4	Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. <i>Chemosphere</i> , 2012 , 87, 918-24	8.4	84
3	Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 425-436	14.6	221
2	Combining size fractionation, scanning electron microscopy, and X-ray absorption spectroscopy to probe zinc speciation in pig slurry. <i>Journal of Environmental Quality</i> , 2010 , 39, 531-40	3.4	24
1	Investigation of copper speciation in pig slurry by a multitechnique approach. <i>Environmental Science & Environmental Science</i>	10.3	44