
Jasquelin Peña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/996152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uranium stability in a large wetland soil core probed by electron acceptors, carbonate amendments and wet-dry cycling in a long-term lysimeter experiment. Science of the Total Environment, 2022, 803, 149783.	3.9	3
2	Socio-Technical Changes for Sustainable Rice Production: Rice Husk Amendment, Conservation Irrigation, and System Changes. Frontiers in Agronomy, 2021, 3, .	1.5	11
3	Coupled As and Mn Redox Transformations in an Fe(0) Electrocoagulation System: Competition for Reactive Oxidants and Sorption Sites. Environmental Science & amp; Technology, 2020, 54, 7165-7174.	4.6	8
4	Iron sequestration by transferrin 1 mediates nutritional immunity in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7317-7325.	3.3	78
5	Influence of manganese abundances on iron and arsenic solubility in rice paddy soils. Geochimica Et Cosmochimica Acta, 2020, 276, 50-69.	1.6	44
6	Large nickel isotope fractionation caused by surface complexation reactions with hexagonal birnessite. Chemical Geology, 2020, 537, 119481.	1.4	22
7	Surveying Manganese Oxides as Electrode Materials for Harnessing Salinity Gradient Energy. Environmental Science & Technology, 2020, 54, 5746-5754.	4.6	17
8	Origin and stability of uranium accumulation-layers in an Alpine histosol. Science of the Total Environment, 2020, 727, 138368.	3.9	7
9	Thallium Sorption onto Manganese Oxides. Environmental Science & Technology, 2019, 53, 13168-13178.	4.6	75
10	Variable Ni isotope fractionation between Fe-oxyhydroxides and implications for the use of Ni isotopes as geochemical tracers. Chemical Geology, 2018, 481, 38-52.	1.4	47
11	Diffusion- and pH-Dependent Reactivity of Layer-Type MnO ₂ : Reactions at Particle Edges versus Vacancy Sites. Environmental Science & Technology, 2018, 52, 3476-3485.	4.6	40
12	Crystal growth and aggregation in suspensions of Î-MnO ₂ nanoparticles: implications for surface reactivity. Environmental Science: Nano, 2018, 5, 497-508.	2.2	48
13	Contaminant loading and competitive access of Pb, Zn and Mn(III) to vacancy sites in biogenic MnO2. Chemical Geology, 2018, 502, 76-87.	1.4	31
14	Bacterial bioreporter detection of arsenic associated with iron oxides. Environmental Sciences: Processes and Impacts, 2018, 20, 913-922.	1.7	4
15	Cr(<scp>vi</scp>) uptake and reduction by biogenic iron (oxyhydr)oxides. Environmental Sciences: Processes and Impacts, 2018, 20, 1056-1068.	1.7	28
16	Reply to the â€~Comment on "Crystal growth and aggregation in suspensions of Î^MnO2 nanoparticles: implications for surface reactivityâ€â€™ by A. Manceau, Environ. Sci.: Nano, 2018, 5, DOI: 10.1039/C8EN00126J. Environmental Science: Nano, 2018, 5, 2201-2203.	2.2	1
17	Mn(II) Oxidation in Fenton and Fenton Type Systems: Identification of Reaction Efficiency and Reaction Products. Environmental Science & amp; Technology, 2017, 51, 2982-2991.	4.6	61
18	Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd(<scp>ii</scp>) and Pb(<scp>ii</scp>) sorption by δ-MnO ₂ and ferrihydrite. Environmental Sciences: Processes and Impacts, 2016, 18, 1030-1041.	1.7	48

Jasquelin Peña

#	Article	IF	CITATIONS
19	Antimonate and arsenate speciation on reactive soil minerals studied by differential pair distribution function analysis. Chemical Geology, 2016, 429, 1-9.	1.4	24
20	Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment. Chemosphere, 2016, 153, 270-279.	4.2	47
21	A Comparison of the Sorption Reactivity of Bacteriogenic and Mycogenic Mn Oxide Nanoparticles. Environmental Science & Technology, 2015, 49, 4200-4208.	4.6	31
22	Probing the sorption reactivity of the edge surfaces in birnessite nanoparticles using nickel(II). Geochimica Et Cosmochimica Acta, 2015, 164, 191-204.	1.6	75
23	Copper sorption by the edge surfaces of synthetic birnessite nanoparticles. Chemical Geology, 2015, 396, 196-207.	1.4	64
24	Rate and mechanism of the photoreduction of birnessite (MnO ₂) nanosheets. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4600-4605.	3.3	82
25	Time-Resolved Investigation of Cobalt Oxidation by Mn(III)-Rich δ-MnO ₂ Using Quick X-ray Absorption Spectroscopy. Environmental Science & Technology, 2015, 49, 10867-10876.	4.6	70
26	Fe(III) Nucleation in the Presence of Bivalent Cations and Oxyanions Leads to Subnanoscale 7 Ã Polymers. Environmental Science & Technology, 2014, 48, 11828-11836.	4.6	49
27	Structure of Fe(III) precipitates generated by the electrolytic dissolution of Fe(0) in the presence of groundwater ions. Geochimica Et Cosmochimica Acta, 2014, 127, 285-304.	1.6	81
28	Removing Arsenic from Synthetic Groundwater with Iron Electrocoagulation: An Fe and As K-Edge EXAFS Study. Environmental Science & Technology, 2012, 46, 986-994.	4.6	145
29	Role of Bacterial Biomass in the Sorption of Ni by Biomass-Birnessite Assemblages. Environmental Science & Technology, 2011, 45, 7338-7344.	4.6	29
30	Mechanisms of nickel sorption by a bacteriogenic birnessite. Geochimica Et Cosmochimica Acta, 2010, 74, 3076-3089.	1.6	117
31	Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chemical Geology, 2009, 260, 149-158.	1.4	82
32	Dissolution of hausmannite (Mn3O4) in the presence of the trihydroxamate siderophore desferrioxamine B. Geochimica Et Cosmochimica Acta, 2007, 71, 5661-5671.	1.6	52
33	Uranium Reduction in Sediments under Diffusion-Limited Transport of Organic Carbon. Environmental Science & Technology, 2005, 39, 7077-7083.	4.6	22
34	Hexavalent Uranium Diffusion into Soils from Concentrated Acidic and Alkaline Solutions. Environmental Science & Technology, 2004, 38, 3056-3062.	4.6	24