
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/995714/publications.pdf Version: 2024-02-01

Μαρκίις Ηστή

#	Article	IF	CITATIONS
1	Light-Sheet Scattering Microscopy to Visualize Long-Term Interactions Between Cells and Extracellular Matrix. Frontiers in Immunology, 2022, 13, 828634.	2.2	1
2	KIR2DS1–HLA-C status as a predictive marker for benefit from rituximab: a post-hoc analysis of the RICOVER-60 and CLL8 trials. Lancet Haematology,the, 2022, 9, e133-e142.	2.2	5
3	Unspecific CTL Killing Is Enhanced by High Glucose via TNF-Related Apoptosis-Inducing Ligand. Frontiers in Immunology, 2022, 13, 831680.	2.2	0
4	Cytotoxic Efficiency of Human CD8+ T Cell Memory Subtypes. Frontiers in Immunology, 2022, 13, 838484.	2.2	7
5	Faster cytotoxicity with age: Increased perforin and granzyme levels in cytotoxic <scp>CD8</scp> ⁺ T cells boost cancer cell elimination. Aging Cell, 2022, 21, .	3.0	11
6	Micropatterned soft hydrogels to study the interplay of receptors and forces in T cell activation. Acta Biomaterialia, 2021, 119, 234-246.	4.1	17
7	Blockade of PD-1 decreases neutrophilic inflammation and lung damage in experimental COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L958-L968.	1.3	5
8	Optoregulated force application to cellular receptors using molecular motors. Nature Communications, 2021, 12, 3580.	5.8	19
9	A calcium optimum for cytotoxic T lymphocyte and natural killer cell cytotoxicity. Seminars in Cell and Developmental Biology, 2021, 115, 10-18.	2.3	16
10	Targeting the Microtubule-Network Rescues CTL Killing Efficiency in Dense 3D Matrices. Frontiers in Immunology, 2021, 12, 729820.	2.2	11
11	Protein Signatures of NK Cell–Mediated Melanoma Killing Predict Response to Immunotherapies. Cancer Research, 2021, 81, 5540-5554.	0.4	5
12	Loss of Mitochondrial Ca ²⁺ Uniporter Limits Inotropic Reserve and Provides Trigger and Substrate for Arrhythmias in Barth Syndrome Cardiomyopathy. Circulation, 2021, 144, 1694-1713.	1.6	30
13	CaMKII does not control mitochondrial Ca ²⁺ uptake in cardiac myocytes. Journal of Physiology, 2020, 598, 1361-1376.	1.3	31
14	Deterministic actin waves as generators of cell polarization cues. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 826-835.	3.3	39
15	Oxidative Stress-Induced STIM2 Cysteine Modifications Suppress Store-Operated Calcium Entry. Cell Reports, 2020, 33, 108292.	2.9	19
16	Integration of the B-Cell Receptor Antigen Neurabin-I/SAMD14 Into an Antibody Format as New Therapeutic Approach for the Treatment of Primary CNS Lymphoma. Frontiers in Oncology, 2020, 10, 580364.	1.3	3
17	Migration of Cytotoxic T Lymphocytes in 3D Collagen Matrices. Biophysical Journal, 2020, 119, 2141-2152.	0.2	35
18	Role of Specific B-Cell Receptor Antigens in Lymphomagenesis. Frontiers in Oncology, 2020, 10, 604685.	1.3	11

#	Article	IF	CITATIONS
19	IL-17C-mediated innate inflammation decreases the response to PD-1 blockade in a model of Kras-driven lung cancer. Scientific Reports, 2019, 9, 10353.	1.6	26
20	Calcium signal dynamics in T lymphocytes: Comparing in vivo and in vitro measurements. Seminars in Cell and Developmental Biology, 2019, 94, 84-93.	2.3	21
21	Review—Quantification of Hydrogen Peroxide by Electrochemical Methods and Electron Spin Resonance Spectroscopy. Journal of the Electrochemical Society, 2019, 166, G82-G101.	1.3	38
22	STIM-Orai Channels and Reactive Oxygen Species in the Tumor Microenvironment. Cancers, 2019, 11, 457.	1.7	43
23	miR-34a: a new player in the regulation of T cell function by modulation of NF-κB signaling. Cell Death and Disease, 2019, 10, 46.	2.7	58
24	A calcium optimum for cytotoxic T lymphocyte and natural killer cell cytotoxicity. Journal of Physiology, 2018, 596, 2681-2698.	1.3	64
25	Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells. Antioxidants and Redox Signaling, 2018, 29, 501-517.	2.5	14
26	Natural killer cells induce distinct modes of cancer cell death: Discrimination, quantification, and modulation of apoptosis, necrosis, and mixed forms. Journal of Biological Chemistry, 2018, 293, 16348-16363.	1.6	78
27	AXER is an ATP/ADP exchanger in the membrane of the endoplasmic reticulum. Nature Communications, 2018, 9, 3489.	5.8	55
28	Quantity, quality, and functionality of peripheral blood cells derived from residual blood of different apheresis kits. Transfusion, 2018, 58, 1516-1526.	0.8	19
29	Light-sheet Microscopy for Three-dimensional Visualization of Human Immune Cells. Journal of Visualized Experiments, 2018, , .	0.2	13
30	The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes. International Journal of Medical Microbiology, 2017, 307, 116-125.	1.5	12
31	NFATc1 controls the cytotoxicity of CD8+ T cells. Nature Communications, 2017, 8, 511.	5.8	150
32	Human profilin 1 is a negative regulator of CTL mediated cellâ€killing and migration. European Journal of Immunology, 2017, 47, 1562-1572.	1.6	43
33	Plant sterol ester diet supplementation increases serum plant sterols and markers of cholesterol synthesis, but has no effect on total cholesterol levels. Journal of Steroid Biochemistry and Molecular Biology, 2017, 169, 219-225.	1.2	19
34	DNA methylation array analysis identifies breast cancer associated <i>RPTOR</i> , <i>MGRN1</i> and <i>RAPSN</i> hypomethylation in peripheral blood DNA. Oncotarget, 2016, 7, 64191-64202.	0.8	33
35	An EPR and DFT study on the primary radical formed in hydroxylation reactions of 2,6-dimethoxy-1,4-benzoquinone. Molecular Physics, 2016, 114, 1856-1866.	0.8	1
36	Syntaxin 8 is required for efficient lytic granule trafficking in cytotoxic T lymphocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1653-1664.	1.9	20

MARKUS HOTH

#	Article	IF	CITATIONS
37	Cytoskeleton rotation relocates mitochondria to the immunological synapse and increases calcium signals. Cell Calcium, 2016, 60, 309-321.	1.1	28
38	Optimality of Spatially Inhomogeneous Search Strategies. Physical Review Letters, 2016, 117, 068101.	2.9	15
39	New insights into the chemistry of Coenzyme Q-0: A voltammetric and spectroscopic study. Bioelectrochemistry, 2016, 111, 100-108.	2.4	7
40	CRAC channels, calcium, and cancer in light of the driver and passenger concept. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1408-1417.	1.9	43
41	Deep characterization of blood cell miRNomes by NGS. Cellular and Molecular Life Sciences, 2016, 73, 3169-3181.	2.4	15
42	Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. Cell Metabolism, 2015, 22, 472-484.	7.2	307
43	VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. Journal of Cell Biology, 2015, 210, 135-151.	2.3	74
44	Recognition of Bacterial Signal Peptides by Mammalian Formyl Peptide Receptors. Journal of Biological Chemistry, 2015, 290, 7369-7387.	1.6	85
45	Human T cells monitored by impedance spectrometry using field-effect transistor arrays: A novel tool for single-cell adhesion and migration studies. Biosensors and Bioelectronics, 2015, 67, 170-176.	5.3	22
46	<scp>DNA</scp> methylation array analyses identified breast cancerâ€associated <scp><i>HYAL2</i></scp> methylation in peripheral blood. International Journal of Cancer, 2015, 136, 1845-1855.	2.3	53
47	The Minimal Requirements to Use Calcium Imaging to Analyze <i>I</i> _{CRAC} . Cold Spring Harbor Protocols, 2014, 2014, pdb.prot073262.	0.2	9
48	Syntaxin11 serves as a tâ€ <scp>SNARE</scp> for the fusion of lytic granules in human cytotoxic <scp>T</scp> lymphocytes. European Journal of Immunology, 2014, 44, 573-584.	1.6	34
49	A simple, economic, timeâ€resolved killing assay. European Journal of Immunology, 2014, 44, 1870-1872.	1.6	55
50	How ORAI and TRP channels interfere with each other: Interaction models and examples from the immune system and the skin. European Journal of Pharmacology, 2014, 739, 49-59.	1.7	51
51	Inverse regulation of melanoma growth and migration by <scp>O</scp> rai1/ <scp>STIM</scp> 2â€dependent calcium entry. Pigment Cell and Melanoma Research, 2014, 27, 442-453.	1.5	84
52	Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nature Communications, 2014, 5, 5222.	5.8	207
53	Patch-Clamp Measurement of <i>I</i> _{CRAC} and ORAI Channel Activity. Cold Spring Harbor Protocols, 2014, 2014, pdb.top066795.	0.2	4
54	Measuring Endogenous <i>I</i> _{CRAC} and ORAI Currents with the Patch-Clamp Technique. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot073254.	0.2	7

#	Article	IF	CITATIONS
55	Molecular regulation of CRAC channels and their role in lymphocyte function. Cellular and Molecular Life Sciences, 2013, 70, 2637-2656.	2.4	84
56	Calcium, cancer and killing: The role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1603-1611.	1.9	113
57	Squareâ€Wave Voltammetry: A Review on the Recent Progress. Electroanalysis, 2013, 25, 2411-2422.	1.5	184
58	The Neglected CRAC Proteins. Current Topics in Membranes, 2013, 71, 237-271.	0.5	121
59	Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells. Cancer Cell, 2013, 23, 811-825.	7.7	553
60	Hydroxylated derivatives of dimethoxy-1,4-benzoquinone as redox switchable earth-alkaline metal ligands and radical scavengers. Scientific Reports, 2013, 3, 1865.	1.6	40
61	Interplay of channels, pumps and organelle location in calcium microdomain formation. New Journal of Physics, 2013, 15, 055022.	1.2	16
62	Different Munc13 Isoforms Function as Priming Factors in Lytic Granule Release from Murine Cytotoxic T Lymphocytes. Traffic, 2013, 14, 798-809.	1.3	28
63	ORAI1 Ca2+ Channels Control Endothelin-1-Induced Mitogenesis and Melanogenesis in Primary Human Melanocytes. Journal of Investigative Dermatology, 2012, 132, 1443-1451.	0.3	54
64	Can We See PIP3 and Hydrogen Peroxide with a Single Probe?. Antioxidants and Redox Signaling, 2012, 17, 505-512.	2.5	20
65	Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress. Journal of Solid State Electrochemistry, 2012, 16, 2315-2328.	1.2	69
66	Mitochondrial dynamics and their impact on T cell function. Cell Calcium, 2012, 52, 57-63.	1.1	69
67	SNARE protein expression and localization in human cytotoxic T lymphocytes. European Journal of Immunology, 2012, 42, 470-475.	1.6	37
68	Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO Journal, 2011, 30, 3895-3912.	3.5	181
69	Calcium Binding and Transport by Coenzyme Q. Journal of the American Chemical Society, 2011, 133, 9293-9303.	6.6	64
70	Excitable T Cells: CaV1.4 Channel Contributions and Controversies. Immunity, 2011, 35, 315-317.	6.6	7
71	Syntaxin7 Is Required for Lytic Granule Release from Cytotoxic T Lymphocytes. Traffic, 2011, 12, 890-901.	1.3	44
72	Immune synapses: mitochondrial morphology matters. EMBO Journal, 2011, 30, 1187-1189.	3.5	15

#	Article	IF	CITATIONS
73	TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 412-423.	1.9	88
74	ORAI-mediated calcium influx in T cell proliferation, apoptosis and tolerance. Cell Calcium, 2011, 50, 261-269.	1.1	66
75	Redox regulation of calcium ion channels: Chemical and physiological aspects. Cell Calcium, 2011, 50, 407-423.	1.1	108
76	Docking of Lytic Granules at the Immunological Synapse in Human CTL Requires Vti1b-Dependent Pairing with CD3 Endosomes. Journal of Immunology, 2011, 186, 6894-6904.	0.4	55
77	Nonsteroidal Anti-inflammatory Drugs Inhibit Vascular Smooth Muscle Cell Proliferation by Enabling the Ca2+-dependent Inactivation of Calcium Release-activated Calcium/Orai Channels Normally Prevented by Mitochondria. Journal of Biological Chemistry, 2011, 286, 16186-16196.	1.6	40
78	Efficiency of Tâ€cell costimulation by CD80 and CD86 crossâ€linking correlates with calcium entry. Immunology, 2010, 129, 28-40.	2.0	39
79	Thapsigargin Induces Expression of Activating Transcription Factor 3 in Human Keratinocytes Involving Ca ²⁺ Ions and c-Jun N-Terminal Protein Kinase. Molecular Pharmacology, 2010, 78, 865-876.	1.0	49
80	Differential Redox Regulation of ORAI Ion Channels: A Mechanism to Tune Cellular Calcium Signaling. Science Signaling, 2010, 3, ra24.	1.6	214
81	Mitochondria Positioning Controls Local Calcium Influx in T Cells. Journal of Immunology, 2010, 184, 184-190.	0.4	100
82	Pharmacology of ORAI channels as a tool to understand their physiological functions. Expert Review of Clinical Pharmacology, 2010, 3, 291-303.	1.3	29
83	Morphological changes of T cells following formation of the immunological synapse modulate intracellular calcium signals. Cell Calcium, 2009, 45, 109-122.	1.1	42
84	The immunological synapse controls local and global calcium signals in T lymphocytes. Immunological Reviews, 2009, 231, 132-147.	2.8	48
85	Protein-film voltammetry: A theoretical study of the temperature effect using square-wave voltammetry. Biophysical Chemistry, 2008, 137, 49-55.	1.5	25
86	A new rapid and simple method to determine the kinetics of electrode reactions of biologically relevant compounds from the half-peak width of the square-wave voltammograms. Biophysical Chemistry, 2008, 138, 130-137.	1.5	26
87	Redox properties of the calcium chelator Fura-2 in mimetic biomembranes. Cell Calcium, 2008, 43, 615-621.	1.1	4
88	Probing the redox activity of T-lymphocytes deposited at electrode surfaces with voltammetric methods. Clinical Chemistry and Laboratory Medicine, 2008, 46, 197-203.	1.4	3
89	T cell activation requires mitochondrial translocation to the immunological synapse. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14418-14423.	3.3	289
90	Redox Chemistry of Ca-Transporter 2-Palmitoylhydroquinone in an Artificial Thin Organic Film Membrane. Journal of Physical Chemistry C, 2007, 111, 6068-6076.	1.5	29

MARKUS HOTH

#	Article	IF	CITATIONS
91	P2X7 receptor stimulation upregulates Egr-1 biosynthesis involving a cytosolic Ca2+ rise, transactivation of the EGF receptor and phosphorylation of ERK and Elk-1. Journal of Cellular Physiology, 2007, 213, 36-44.	2.0	36
92	Calcium dependence of T cell proliferation following focal stimulation. European Journal of Immunology, 2007, 37, 2723-2733.	1.6	48
93	Disruption of the cortical actin cytoskeleton does not affect store operated Ca ²⁺ channels in human Tâ€cells. FEBS Letters, 2007, 581, 3557-3562.	1.3	17
94	Calcium release-activated calcium channels as signal transducers in T-cells. Signal Transduction, 2006, 6, 233-239.	0.7	0
95	TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium, 2006, 39, 163-173.	1.1	95
96	Sustained Activity of Calcium Release-activated Calcium Channels Requires Translocation of Mitochondria to the Plasma Membrane. Journal of Biological Chemistry, 2006, 281, 40302-40309.	1.6	135
97	Calcium-dependent activation of T-lymphocytes. Pflugers Archiv European Journal of Physiology, 2005, 450, 1-12.	1.3	89
98	Potent Inhibition of Ca2+ Release-activated Ca2+ Channels and T-lymphocyte Activation by the Pyrazole Derivative BTP2. Journal of Biological Chemistry, 2004, 279, 12427-12437.	1.6	257
99	Ca2+ Signaling in Identified T-lymphocytes from Human Intestinal Mucosa. Journal of Biological Chemistry, 2004, 279, 5641-5647.	1.6	31
100	Apparent cytosolic calcium gradients in T-lymphocytes due to fura-2 accumulation in mitochondria. Cell Calcium, 2004, 36, 99-109.	1.1	21
101	Two-photon analysis of calcium signals in T lymphocytes of intact lamina propria from human intestine. European Journal of Immunology, 2004, 34, 3477-3484.	1.6	18
102	TRPC3 Mediates T-cell Receptor-dependent Calcium Entry in Human T-lymphocytes. Journal of Biological Chemistry, 2003, 278, 26629-26638.	1.6	118
103	Skeletal muscle Lâ€type Ca2+current modulation in γ1â€deficient and wildtype murine myotubes by the γ1 subunit and cAMP. Journal of Physiology, 2002, 539, 459-468.	1.3	26
104	Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasmaâ€membrane calciumâ€ATPase in human T cells. Journal of Physiology, 2002, 541, 877-894.	1.3	116
105	The PDZ-interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. Journal of Cell Science, 2002, 115, 3497-3508.	1.2	109
106	The PDZ-interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. Journal of Cell Science, 2002, 115, 3497-508.	1.2	100
107	Absence of the Î ³ Subunit of the Skeletal Muscle Dihydropyridine Receptor Increases L-type Ca2+ Currents and Alters Channel Inactivation Properties. Journal of Biological Chemistry, 2000, 275, 14476-14481.	1.6	95
108	TRP4 (CCE1) Protein Is Part of Native Calcium Release-activated Ca2+-like Channels in Adrenal Cells. Journal of Biological Chemistry, 2000, 275, 23965-23972.	1.6	170

MARKUS HOTH

#	Article	IF	CITATIONS
109	Simultaneous Measurement of Membrane Current and Intracellular Calcium. , 1999, , 140-163.		0
110	The Fate of Calcium Ions Entering a Cell. , 1998, , 23-33.		0
111	Ca2+-induced Ca2+ Release in Chinese Hamster Ovary (CHO) Cells Co-expressing Dihydropyridine and Ryanodine Receptors. Journal of General Physiology, 1997, 109, 619-631.	0.9	23
112	Function Follows Form: The Role of Store-Operated Calcium Channels in T-Cell Activation. Cellular Physiology and Biochemistry, 1997, 7, 203-218.	1.1	6
113	Mitochondrial Regulation of Store-operated Calcium Signaling in T Lymphocytes. Journal of Cell Biology, 1997, 137, 633-648.	2.3	482
114	Depletion of intracellular calcium stores activates an outward potassium current in mast and RBL-1 cells that is correlated with CRAC channel activation. FEBS Letters, 1996, 390, 285-288.	1.3	22
115	Calcium and barium permeation through calcium release-activated calcium (CRAC) channels. Pflugers Archiv European Journal of Physiology, 1995, 430, 315-322.	1.3	115
116	Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels Journal of Cell Biology, 1995, 131, 655-667.	2.3	177
117	Non-specific effects of calcium entry antagonists in mast cells. Pflugers Archiv European Journal of Physiology, 1994, 428, 433-438.	1.3	154
118	Multiple mechanisms of manganese-induced quenching of fura-2 fluorescence in rat mast cells. Pflugers Archiv European Journal of Physiology, 1993, 423, 225-231.	1.3	55
119	Calcium influx and its control by calcium release. Current Opinion in Neurobiology, 1993, 3, 368-374.	2.0	160
120	Ion Channels and Calcium Signaling in Mast Cells. Annals of the New York Academy of Sciences, 1993, 707, 198-209.	1.8	53
121	Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 3068-3072.	3.3	152
122	Calcium releaseâ€activated calcium current in rat mast cells Journal of Physiology, 1993, 465, 359-386.	1.3	671
123	Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature, 1992, 355, 353-356.	13.7	1,696