
Jiacan Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/995613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Advanced Functional Materials, 2021, 31, 2009432.	7.8	212
2	Reversal of Osteoporotic Activity by Endothelial Cell-Secreted Bone Targeting and Biocompatible Exosomes. Nano Letters, 2019, 19, 3040-3048.	4.5	199
3	Subchondral bone microenvironment in osteoarthritis and pain. Bone Research, 2021, 9, 20.	5.4	190
4	Plasmolysis-Inspired Nanoengineering of Functional Yolk–Shell Microspheres with Magnetic Core and Mesoporous Silica Shell. Journal of the American Chemical Society, 2017, 139, 15486-15493.	6.6	187
5	Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioactive Materials, 2022, 12, 327-339.	8.6	160
6	Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss. Bioactive Materials, 2021, 6, 2905-2913.	8.6	106
7	RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Research, 2018, 6, 34.	5.4	104
8	Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. Advanced Materials, 2021, 33, e2005215.	11.1	100
9	A Magneticâ€Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclastâ€Targeted Inhibition and Heterogeneous Nanocatalysis. Advanced Materials, 2018, 30, e1707515.	11.1	96
10	Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2019, 174, 70-79.	2.5	88
11	RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Reports, 2021, 22, e52481.	2.0	85
12	The horizon of bone organoid: A perspective on construction and application. Bioactive Materials, 2022, 18, 15-25.	8.6	78
13	Matrine prevents bone loss in ovariectomized mice by inhibiting RANKLâ€induced osteoclastogenesis. FASEB Journal, 2017, 31, 4855-4865.	0.2	77
14	Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioactive Materials, 2022, 14, 169-181.	8.6	65
15	Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. Journal of Materials Chemistry B, 2018, 6, 740-752.	2.9	62
16	Rational Design of Multifunctional CuS Nanoparticleâ€PEG Composite Soft Hydrogel oated 3D Hard Polycaprolactone Scaffolds for Efficient Bone Regeneration. Advanced Functional Materials, 2022, 32,	7.8	62
17	Kupffer cell-derived TNF-α promotes hepatocytes to produce CXCL1 and mobilize neutrophils in response to necrotic cells. Cell Death and Disease, 2018, 9, 323.	2.7	60
18	Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. Science Advances, 2020, 6, .	4.7	59

#	Article	IF	CITATIONS
19	In vitro degradability, bioactivity and cell responses to mesoporous magnesium silicate for the induction of bone regeneration. Colloids and Surfaces B: Biointerfaces, 2014, 120, 38-46.	2.5	58
20	Integrative Bone Metabolomics—Lipidomics Strategy for Pathological Mechanism of Postmenopausal Osteoporosis Mouse Model. Scientific Reports, 2018, 8, 16456.	1.6	58
21	Highly dispersed Pt nanoparticles on ultrasmall EMT zeolite: A peroxidase-mimic nanoenzyme for detection of H2O2 or glucose. Journal of Colloid and Interface Science, 2020, 570, 300-311.	5.0	48
22	18β-Glycyrrhetinic Acid Inhibits Osteoclastogenesis In Vivo and In Vitro by Blocking RANKL-Mediated RANK–TRAF6 Interactions and NF-κB and MAPK Signaling Pathways. Frontiers in Pharmacology, 2018, 9, 647.	1.6	47
23	Aligned Carbon Nanotubes Reduce Hypertrophic Scar <i>via</i> Regulating Cell Behavior. ACS Nano, 2018, 12, 7601-7612.	7.3	46
24	Lactulose Suppresses Osteoclastogenesis and Ameliorates Estrogen Deficiency-Induced Bone Loss in Mice. , 2020, 11, 629.		45
25	Neobavaisoflavone inhibits osteoclastogenesis through blocking RANKL signallingâ€mediated TRAF6 and câ€5rc recruitment and NFâ€₽B, MAPK and Akt pathways. Journal of Cellular and Molecular Medicine, 2020, 24, 9067-9084.	1.6	45
26	Hollow Mesoporous Carbon Nanospheres Loaded with Pt Nanoparticles for Colorimetric Detection of Ascorbic Acid and Glucose. ACS Applied Nano Materials, 2020, 3, 4586-4598.	2.4	44
27	Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Chemical Science, 2019, 10, 1522-1530.	3.7	43
28	Bone Marrow Mesenchymal Stromal Cells: Identification, Classification, and Differentiation. Frontiers in Cell and Developmental Biology, 2021, 9, 787118.	1.8	40
29	Diterbutyl phthalate attenuates osteoarthritis in ACLT mice via suppressing ERK/c-fos/NFATc1 pathway, and subsequently inhibiting subchondral osteoclast fusion. Acta Pharmacologica Sinica, 2022, 43, 1299-1310.	2.8	37
30	Reactive Oxygen Species (ROS)-Responsive Biomaterials for the Treatment of Bone-Related Diseases. Frontiers in Bioengineering and Biotechnology, 2021, 9, 820468.	2.0	36
31	Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair. International Journal of Nanomedicine, 2012, 7, 2547.	3.3	35
32	Evaluation of absorbable hemostatic agents of polyelectrolyte complexes using carboxymethyl starch and chitosan oligosaccharide both <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2018, 6, 3332-3344.	2.6	35
33	Nanotopographical Cues Mediate Osteogenesis of Stem Cells on Virus Substrates through BMP-2 Intermediate. Nano Letters, 2019, 19, 8372-8380.	4.5	33
34	Engineered extracellular vesicles for bone therapy. Nano Today, 2022, 44, 101487.	6.2	32
35	Highly sensitive methane catalytic combustion micro-sensor based on mesoporous structure and nano-catalyst. Nanoscale, 2013, 5, 9720.	2.8	31
36	Controlled release of vancomycin from 3D porous graphene-based composites for dual-purpose treatment of infected bone defects. RSC Advances, 2017, 7, 2753-2765.	1.7	31

#	Article	IF	CITATIONS
37	Triptolide prevents bone loss via suppressing osteoclastogenesis through inhibiting PI3Kâ€AKTâ€NFATc1 pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 6149-6161.	1.6	31
38	Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease. Frontiers in Pharmacology, 0, 13, .	1.6	31
39	Surgical Treatment of Calcaneal Fractures of Sanders Type II and III by a Minimally Invasive Technique Using a Locking Plate. Journal of Foot and Ankle Surgery, 2015, 54, 76-81.	0.5	30
40	3D Interconnected Mesoporous Alumina with Loaded Hemoglobin as a Highly Active Electrochemical Biosensor for H ₂ O ₂ . Advanced Healthcare Materials, 2018, 7, e1800149.	3.9	28
41	Association between the metabolome and bone mineral density in a Chinese population. EBioMedicine, 2020, 62, 103111.	2.7	28
42	Orthopedics research output from China, USA, UK, Japan, Germany and France: A 10-year survey of the literature. Orthopaedics and Traumatology: Surgery and Research, 2016, 102, 939-945.	0.9	27
43	Promotion of in vivo degradability, vascularization and osteogenesis of calcium sulfate-based bone cements containing nanoporous lithium doping magnesium silicate. International Journal of Nanomedicine, 2017, Volume 12, 1341-1352.	3.3	27
44	Development of 3-mercaptopropyltrimethoxysilane (MPTS)-modified bone marrow mononuclear cell membrane chromatography for screening anti-osteoporosis components from Scutellariae Radix. Acta Pharmaceutica Sinica B, 2020, 10, 1856-1865.	5.7	27
45	Bone-targeted biomaterials: Strategies and applications. Chemical Engineering Journal, 2022, 446, 137133.	6.6	27
46	Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements. Materials Science and Engineering C, 2017, 75, 620-628.	3.8	26
47	Polymerization-Induced Colloid Assembly Route to Iron Oxide-Based Mesoporous Microspheres for Gas Sensing and Fenton Catalysis. ACS Applied Materials & Interfaces, 2018, 10, 13028-13039.	4.0	26
48	<scp>l</scp> â€ŧetrahydropalmatine suppresses osteoclastogenesis in vivo and in vitro via blocking RANKâ€TRAF6 interactions and inhibiting NFâ€̂₽B and MAPK pathways. Journal of Cellular and Molecular Medicine, 2020, 24, 785-798.	1.6	26
49	Melatonin lowers edema after spinal cord injury. Neural Regeneration Research, 2014, 9, 2205.	1.6	26
50	<i>In vitro</i> degradability, bioactivity and primary cell responses to bone cements containing mesoporous magnesium–calcium silicate and calcium sulfate for bone regeneration. Journal of the Royal Society Interface, 2015, 12, 20150779.	1.5	24
51	Regulation of body length and bone mass by Gpr126/Adgrg6. Science Advances, 2020, 6, eaaz0368.	4.7	24
52	Lithium doped silica nanospheres/poly(dopamine) composite coating on polyetheretherketone to stimulate cell responses, improve bone formation and osseointegration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 965-976.	1.7	23
53	Shikimic Acid Inhibits Osteoclastogenesis in Vivo and in Vitro by Blocking RANK/TRAF6 Association and Suppressing NF-κB and MAPK Signaling Pathways. Cellular Physiology and Biochemistry, 2018, 51, 2858-2871.	1.1	23
54	A Highly Efficient Synthesis of Polyubiquitin Chains. Advanced Science, 2018, 5, 1800234.	5.6	23

#	Article	IF	CITATIONS
55	<p>One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment</p> . International Journal of Nanomedicine, 2020, Volume 15, 5027-5042.	3.3	23
56	Structure-based development of an osteoprotegerin-like glycopeptide that blocks RANKL/RANK interactions and reduces ovariectomy-induced bone loss in mice. European Journal of Medicinal Chemistry, 2018, 145, 661-672.	2.6	22
57	Exosome-Laden Hydrogels: A Novel Cell-free Strategy for In-situ Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, 866208.	2.0	22
58	Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. International Journal of Nanomedicine, 2018, Volume 13, 1107-1117.	3.3	21
59	Bone Regeneration Using MMP-Cleavable Peptides-Based Hydrogels. Gels, 2021, 7, 199.	2.1	21
60	Optimizing the strontium content to achieve an ideal osseointegration through balancing apatite-forming ability and osteogenic activity. Materials Science and Engineering C, 2022, 133, 112647.	3.8	21
61	Stat3 Signaling Pathway: A Future Therapeutic Target for Bone-Related Diseases. Frontiers in Pharmacology, 2022, 13, 897539.	1.6	21
62	The "Three in One―Bone Repair Strategy for Osteoporotic Fractures. Frontiers in Endocrinology, 0, 13,	1.5	21
63	Methodological reporting quality of randomized controlled trials: A survey of seven core journals of orthopaedics from Mainland China over 5 years following the CONSORT statement. Orthopaedics and Traumatology: Surgery and Research, 2016, 102, 933-938.	0.9	20
64	Shape memory Ni-Ti alloy swan-like bone connector for treatment of humeral shaft nonunion. International Orthopaedics, 2010, 34, 369-375.	0.9	19
65	Bone Marrow Adipocytes: A Critical Player in the Bone Marrow Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 770705.	1.8	18
66	Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material. Scientific Reports, 2017, 7, 823.	1.6	17
67	Biocompatible PEGylated Gold nanorods function As cytokinesis inhibitors to suppress angiogenesis. Biomaterials, 2018, 178, 23-35.	5.7	17
68	Degradability, cytocompatibility, and osteogenesis of porous scaffolds of nanobredigite and PCL–PEG–PCL composite. International Journal of Nanomedicine, 2016, Volume 11, 3545-3555.	3.3	16
69	Structure Engineering of Yolk–Shell Magnetic Mesoporous Silica Microspheres with Broccoliâ€Like Morphology for Efficient Catalysis and Enhanced Cellular Uptake. Small, 2021, 17, e2006925.	5.2	16
70	Construction of Local Drug Delivery System on Titanium-Based Implants to Improve Osseointegration. Pharmaceutics, 2022, 14, 1069.	2.0	16
71	Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate. International Journal of Nanomedicine, 2017, Volume 12, 3637-3651.	3.3	15
72	Influences of mesoporous magnesium calcium silicate on mineralization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites. Scientific Reports, 2018, 8, 174.	1.6	15

#	Article	IF	CITATIONS
73	Effects of Wharton's jelly cells of the human umbilical cord on acute spinal cord injury in rats, and expression of interleukin-1l² and nerve growth factor in spinal cord tissues. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1254-1258.	1.9	14
74	Effects of mesoporous calcium magnesium silicate on setting time, compressive strength, apatite formation, degradability and cell behavior to magnesium phosphate based bone cements. RSC Advances, 2017, 7, 870-879.	1.7	14
75	A Comparative Study of Bioartificial Bone Tissue Poly-L-lactic Acid/Polycaprolactone and PLLA Scaffolds Applied in Bone Regeneration. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	12
76	Self-assembled supramolecular systems for bone engineering applications. Current Opinion in Colloid and Interface Science, 2018, 35, 104-111.	3.4	12
77	Guaiacol suppresses osteoclastogenesis by blocking interactions of RANK with TRAF6 and Câ€6rc and inhibiting NFâ€₽B, MAPK and AKT pathways. Journal of Cellular and Molecular Medicine, 2020, 24, 5122-5134.	1.6	12
78	Mesoporous calcium–silicon xerogels with mesopore size and pore volume influence hMSC behaviors by load and sustained release of rhBMP-2. International Journal of Nanomedicine, 2015, 10, 1715.	3.3	11
79	Absorbable nanocomposites composed of mesoporous bioglass nanoparticles and polyelectrolyte complexes for surgical hemorrhage control. Materials Science and Engineering C, 2020, 109, 110556.	3.8	11
80	New insight into unexpected bone formation by denosumab. Drug Discovery Today, 2020, 25, 1919-1922.	3.2	11
81	Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly(l -lactide) composite. Journal of the Royal Society Interface, 2015, 12, 20150507.	1.5	10
82	PTHG2 Reduces Bone Loss in Ovariectomized Mice by Directing Bone Marrow Mesenchymal Stem Cell Fate. Stem Cells International, 2021, 2021, 1-13.	1.2	10
83	Characterization and osteogenic evaluation of mesoporous magnesium–calcium silicate/polycaprolactone/polybutylene succinate composite scaffolds fabricated by rapid prototyping. RSC Advances, 2018, 8, 33882-33892.	1.7	9
84	Safety Evaluation of Natural Drugs in Chronic Skeletal Disorders: A Literature Review of Clinical Trials in the Past 20 years. Frontiers in Pharmacology, 2021, 12, 801287.	1.6	9
85	Bâ€cell lymphomaâ€3 controls mesenchymal stem cell commitment and senescence during skeletal aging. Clinical and Translational Medicine, 2022, 12, .	1.7	9
86	d -Amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4678-4681.	1.0	8
87	Mechanism of Controlled Release of Vancomycin from Crumpled Graphene Oxides. ACS Omega, 2019, 4, 12252-12258.	1.6	8
88	Three-dimensional finite element analysis of lumbar vertebra loaded by static stress and its biomechanical significance. Chinese Journal of Traumatology - English Edition, 2009, 12, 153-6.	0.7	2
89	Role of Phosphorus-Containing Molecules on the Formation of Nano-Sized Calcium Phosphate for Bone Therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2