
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/995561/publications.pdf Version: 2024-02-01

HONG CIM

#	Article	IF	CITATIONS
1	Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. Combustion and Flame, 2006, 145, 128-144.	5.2	189
2	Structure and propagation of triple flames in partially premixed hydrogen–air mixtures. Combustion and Flame, 1999, 119, 436-454.	5.2	164
3	The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen–air mixture. Proceedings of the Combustion Institute, 2005, 30, 875-882.	3.9	157
4	Correlation of flame speed with stretch in turbulent premixed methane/air flames. Proceedings of the Combustion Institute, 1998, 27, 819-826.	0.3	145
5	Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proceedings of the Combustion Institute, 2000, 28, 211-218.	3.9	131
6	Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames. Combustion and Flame, 2002, 131, 246-258.	5.2	129
7	Effects of flow transients on the burning velocity of laminar hydrogen/air premixed flames. Proceedings of the Combustion Institute, 2000, 28, 1833-1840.	3.9	80
8	Effects of flow strain on triple flame propagation. Combustion and Flame, 2001, 126, 1384-1392.	5.2	78
9	Heavy fuel oil pyrolysis and combustion: Kinetics and evolved gases investigated by TGA-FTIR. Journal of Analytical and Applied Pyrolysis, 2017, 127, 183-195.	5.5	78
10	Homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) in compression ignition engine with low octane gasoline. Energy, 2018, 158, 181-191.	8.8	78
11	Autoignition and front propagation in low temperature combustion engine environments. Combustion and Flame, 2011, 158, 2105-2112.	5.2	73
12	EFFECTS OF HYDROGEN ADDITION ON THE MARKSTEIN LENGTH AND FLAMMABILITY LIMIT OF STRETCHED METHANE/AIR PREMIXED FLAMES. Combustion Science and Technology, 2006, 178, 1585-1611.	2.3	71
13	Physical and chemical effects of low octane gasoline fuels on compression ignition combustion. Applied Energy, 2016, 183, 1197-1208.	10.1	71
14	Dynamic flammability limits of methane/air premixed flames with mixture composition fluctuations. Proceedings of the Combustion Institute, 2002, 29, 77-84.	3.9	69
15	A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations. Combustion Science and Technology, 2015, 187, 1263-1275.	2.3	68
16	Ozone Production With Dielectric Barrier Discharge: Effects of Power Source and Humidity. IEEE Transactions on Plasma Science, 2016, 44, 2288-2296.	1.3	68
17	A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames. Combustion and Flame, 2016, 163, 220-240.	5.2	66
18	Large eddy simulation of turbulent front propagation with dynamic subgrid models. Physics of Fluids, 1997, 9, 3826-3833.	4.0	65

#	Article	lF	CITATIONS
19	Development and application of a comprehensive soot model for 3D CFD reacting flow studies in a diesel engine. Combustion and Flame, 2005, 143, 11-26.	5.2	65
20	Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline. Fuel, 2018, 211, 420-431.	6.4	61
21	Combustion regime of a reacting front propagating into an auto-igniting mixture. Proceedings of the Combustion Institute, 2011, 33, 3001-3006.	3.9	58
22	Chemical response of methane/air diffusion flames to unsteady strain rate. Combustion and Flame, 1999, 118, 204-212.	5.2	57
23	Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels. Journal of Energy Resources Technology, Transactions of the ASME, 2016, 138, .	2.3	57
24	The propagation of a laminar reaction front during end-gas auto-ignition. Combustion and Flame, 2012, 159, 2077-2086.	5.2	54
25	Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration. Computers and Fluids, 2018, 173, 73-79.	2.5	52
26	Computational characterization of hydrogen direct injection and nonpremixed combustion in a compression-ignition engine. International Journal of Hydrogen Energy, 2021, 46, 18678-18696.	7.1	50
27	A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons. Combustion and Flame, 2016, 163, 427-436.	5.2	48
28	Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations. Proceedings of the Combustion Institute, 2017, 36, 3705-3716.	3.9	48
29	Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation. Combustion and Flame, 2017, 183, 372-385.	5.2	47
30	Transient dynamics of edge flames in a laminar nonpremixed hydrogen–air counterflow. Proceedings of the Combustion Institute, 2005, 30, 349-356.	3.9	46
31	Dynamics of bluff-body-stabilized premixed hydrogen/air flames in a narrow channel. Combustion and Flame, 2015, 162, 2602-2609.	5.2	46
32	Numerical investigation of injector geometry effects on fuel stratification in a GCI engine. Fuel, 2018, 214, 580-589.	6.4	45
33	Transient soot dynamics in turbulent nonpremixed ethylene–air counterflow flames. Proceedings of the Combustion Institute, 2007, 31, 701-708.	3.9	44
34	Exhaust PM Emissions Analysis of Alcohol Fueled Heavy-Duty Engine Utilizing PPC. SAE International Journal of Engines, 0, 9, 2142-2152.	0.4	44
35	Three-stage heat release in n-heptane auto-ignition. Proceedings of the Combustion Institute, 2019, 37, 485-492.	3.9	44
36	On the formation of hydrogen peroxide in water microdroplets. Chemical Science, 2022, 13, 2574-2583.	7.4	44

#	Article	IF	CITATIONS
37	Development of a reduced four-component (toluene/n-heptane/iso-octane/ethanol) gasoline surrogate model. Fuel, 2019, 247, 164-178.	6.4	43
38	Chemical kinetic insights into the ignition dynamics of n-hexane. Combustion and Flame, 2018, 188, 28-40.	5.2	42
39	Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames. Combustion Science and Technology, 2016, 188, 1182-1198.	2.3	41
40	On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels. Fuel, 2017, 207, 373-388.	6.4	40
41	A Numerical Study of Transient Ignition in a Counterflow Nonpremixed Methane-Air Flame Using Adaptive Time Integration. Combustion Science and Technology, 2000, 158, 341-363.	2.3	38
42	Response of counterflow premixed flames to oscillating strain rates. Combustion and Flame, 1996, 105, 358-372.	5.2	36
43	Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis. Physical Review Fluids, 2016, 1, .	2.5	36
44	Classification of ignition regimes in HCCI combustion using computational singular perturbation. Proceedings of the Combustion Institute, 2011, 33, 2991-2999.	3.9	35
45	Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion. , 0, , .		35
46	Investigation of the turbulent flame structure and topology at different Karlovitz numbers using the tangential stretching rate index. Combustion and Flame, 2019, 200, 155-167.	5.2	35
47	A computational study of spherical diffusion flames in microgravity with gas radiation Part I: Model development and validation. Combustion and Flame, 2010, 157, 118-126.	5.2	34
48	Prediction of ignition modes of NTC-fuel/air mixtures with temperature and concentration fluctuations. Combustion and Flame, 2020, 213, 382-393.	5.2	34
49	Analysis of n-heptane auto-ignition characteristics using computational singular perturbation. Proceedings of the Combustion Institute, 2013, 34, 1125-1133.	3.9	32
50	Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion. Scientific Reports, 2017, 7, 11545.	3.3	32
51	Investigation on a high-stratified direct injection spark ignition (DISI) engine fueled with methanol under a high compression ratio. Applied Thermal Engineering, 2019, 148, 352-362.	6.0	32
52	A new formulation of physical surrogates of FACE A gasoline fuel based on heating and evaporation characteristics. Fuel, 2016, 176, 56-62.	6.4	31
53	A computational study of the effects of DC electric fields on non-premixed counterflow methane-air flames. Journal Physics D: Applied Physics, 2017, 50, 494005.	2.8	31
54	The origin of CEMA and its relation to CSP. Combustion and Flame, 2021, 227, 396-401.	5.2	31

#	Article	IF	CITATIONS
55	Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 2016, 17, 280-290.	2.3	30
56	In-Cylinder Combustion and Soot Evolution in the Transition from Conventional Compression Ignition (CI) Mode to Partially Premixed Combustion (PPC) Mode. Energy & Fuels, 2018, 32, 2306-2320.	5.1	30
57	The use of CO2 as an additive for ignition delay and pollutant control in CH4/air autoignition. Fuel, 2018, 211, 898-905.	6.4	30
58	The effect of fuel on high velocity evaporating fuel sprays: Large-Eddy simulation of Spray A with various fuels. International Journal of Engine Research, 2020, 21, 26-42.	2.3	29
59	Effect of soot model, moment method, and chemical kinetics on soot formation in a model aircraft combustor. Proceedings of the Combustion Institute, 2019, 37, 1065-1074.	3.9	28
60	Turbulent scalar fluxes in H ₂ -air premixed flames at low and high Karlovitz numbers. Combustion Theory and Modelling, 2018, 22, 1033-1048.	1.9	27
61	Direct numerical simulations of turbulent reacting flows with shock waves and stiff chemistry using many-core/GPU acceleration. Computers and Fluids, 2021, 215, 104787.	2.5	27
62	A statistical analysis of developing knock intensity in a mixture with temperature inhomogeneities. Proceedings of the Combustion Institute, 2021, 38, 5781-5789.	3.9	26
63	Computational comparison of the conventional diesel and hydrogen direct-injection compression-ignition combustion engines. Fuel, 2022, 307, 121909.	6.4	26
64	Three-dimensional simulation of ionic wind in a laminar premixed Bunsen flame subjected to a transverse DC electric field. Combustion and Flame, 2019, 202, 90-106.	5.2	25
65	A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities. Combustion Theory and Modelling, 2015, 19, 587-601.	1.9	24
66	Chemical Ignition Characteristics of Ethanol Blending with Primary Reference Fuels. Energy & Fuels, 2019, 33, 10185-10196.	5.1	24
67	Effects of unsteady scalar dissipation rate on ignition of non-premixed hydrogen/air mixtures in counterflow. Proceedings of the Combustion Institute, 2002, 29, 1629-1636.	3.9	23
68	Topological and chemical characteristics of turbulent flames at MILD conditions. Combustion and Flame, 2019, 208, 86-98.	5.2	23
69	The iâ^'V curve characteristics of burner-stabilized premixed flames: detailed and reduced models. Proceedings of the Combustion Institute, 2017, 36, 1241-1250.	3.9	22
70	A priori DNS study of applicability of flamelet concept to predicting mean concentrations of species in turbulent premixed flames at various Karlovitz numbers. Combustion and Flame, 2020, 222, 370-382.	5.2	22
71	Effects of Turbulence and Temperature Fluctuations on Knock Development in an Ethanol/Air Mixture. Flow, Turbulence and Combustion, 2021, 106, 575-595.	2.6	21
72	Statistics of local and global flame speed and structure for highly turbulent H <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.svg"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>/air premixed flames. Combustion and Flame, 2021, 232, 111523.</mml:math 	5.2	21

#	Article	lF	CITATIONS
73	Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel. Proceedings of the Combustion Institute, 2017, 36, 1569-1576.	3.9	20
74	Automated chemical kinetic mechanism simplification with minimal user expertise. Combustion and Flame, 2018, 197, 439-448.	5.2	20
75	A computational analysis of methanol autoignition enhancement by dimethyl ether addition in a counterflow mixing layer. Combustion and Flame, 2018, 195, 84-98.	5.2	20
76	A computational study of Saffman-Taylor instability in premixed flames. Combustion Theory and Modelling, 2003, 7, 343-363.	1.9	19
77	Effects of Substitution on Counterflow Ignition and Extinction of C3 and C4 Alcohols. Energy & Fuels, 2016, 30, 6091-6097.	5.1	19
78	Effects of fuel injection parameters on the performance of homogeneous charge compression ignition at low-load conditions. International Journal of Engine Research, 2016, 17, 413-420.	2.3	19
79	Hydrodynamic and chemical scaling for blow-off dynamics of lean premixed flames stabilized on a meso-scale bluff-body. Proceedings of the Combustion Institute, 2019, 37, 1831-1841.	3.9	19
80	Experimental and computational studies of methanol and ethanol preignition behind reflected shock waves. Combustion and Flame, 2021, 234, 111621.	5.2	19
81	Direct numerical simulations of non-premixed ethylene–air flames: Local flame extinction criterion. Combustion and Flame, 2014, 161, 2933-2950.	5.2	18
82	Prediction of mean radical concentrations in lean hydrogen-air turbulent flames at different Karlovitz numbers adopting a newly extended flamelet-based presumed PDF. Combustion and Flame, 2021, 226, 248-259.	5.2	18
83	Detonation onset in a thermally stratified constant volume reactor. Proceedings of the Combustion Institute, 2019, 37, 3529-3536.	3.9	17
84	Modeling of Diesel Combustion, Soot and NO Emissions Based on a Modified Eddy Dissipation Concept. Combustion Science and Technology, 2008, 180, 1421-1448.	2.3	16
85	Computational singular perturbation analysis of super-knock in SI engines. Fuel, 2018, 225, 184-191.	6.4	16
86	Auto-ignitive deflagration speed of methane (CH4) blended dimethyl-ether (DME)/air mixtures at stratified conditions. Combustion and Flame, 2020, 211, 377-391.	5.2	16
87	Dissipation and dilatation rates in premixed turbulent flames. Physics of Fluids, 2021, 33, 035112.	4.0	16
88	Extinction characteristics of catalyst-assisted combustion in a stagnation-point flow reactor. Combustion and Flame, 2006, 145, 390-400.	5.2	15
89	Analysis of the current–voltage curves and saturation currents in burner-stabilised premixed flames with detailed ion chemistry and transport models. Combustion Theory and Modelling, 2018, 22, 939-972.	1.9	15
90	Exergy loss characteristics of DME/air and ethanol/air mixtures with temperature and concentration fluctuations under HCCI/SCCI conditions: A DNS study. Combustion and Flame, 2021, 226, 334-346.	5.2	15

#	Article	IF	CITATIONS
91	Estimates of the air-fuel ratio at the time of ignition in a pre-chamber using a narrow throat geometry. International Journal of Engine Research, 2023, 24, 622-638.	2.3	15
92	Numerical investigation of pressure effects on soot formation in laminar coflow ethylene/air diffusion flames. Fuel, 2021, 292, 120176.	6.4	14
93	Local flame displacement speeds of hydrogen-air premixed flames in moderate to intense turbulence. Combustion and Flame, 2022, 236, 111812.	5.2	14
94	A surrogate fuel formulation to characterize heating and evaporation of light naphtha droplets. Combustion Science and Technology, 2018, 190, 1218-1231.	2.3	13
95	Assessment of weighted-sum-of-gray-gases models for gas-soot mixture in jet diffusion flames. International Journal of Heat and Mass Transfer, 2021, 181, 121907.	4.8	13
96	A numerical investigation of isobaric combustion strategy in a compression ignition engine. International Journal of Engine Research, 2021, 22, 3372-3390.	2.3	12
97	Coupled in-nozzle flow and spray simulation of Engine Combustion Network Spray-G injector. International Journal of Engine Research, 2021, 22, 2982-2996.	2.3	12
98	Surface Density Function statistics in hydrogen-air flames for different turbulent premixed combustion regimes. Combustion Science and Technology, 2018, 190, 1988-2002.	2.3	11
99	Unsteady deflagration speed of an auto-ignitive dimethyl-ether (DME)/air mixture at stratified conditions. Proceedings of the Combustion Institute, 2019, 37, 4717-4727.	3.9	11
100	Experimental and numerical study of polycyclic aromatic hydrocarbon formation in ethylene laminar co-flow diffusion flames. Fuel, 2021, 289, 119931.	6.4	11
101	Numerical study on propagation and NO reduction behavior of laminar stratified ammonia/air flames. Combustion and Flame, 2022, 241, 112102.	5.2	11
102	Autoignition of non-premixed n-heptane/air counterflow subjected to unsteady scalar dissipation rate. Proceedings of the Combustion Institute, 2009, 32, 1083-1090.	3.9	10
103	Effects of Reaction Progress Variable Definition on the Flame Surface Density Transport Statistics and Closure for Different Combustion Regimes. Combustion Science and Technology, 2019, 191, 1276-1293.	2.3	10
104	Screening gasâ€phase chemical kinetic models: Collision limit compliance and ultrafast timescales. International Journal of Chemical Kinetics, 2020, 52, 599-610.	1.6	10
105	Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities. Energy Procedia, 2015, 66, 1-4.	1.8	9
106	Analysis of Hydrogen/Air Turbulent Premixed Flames at Different Karlovitz Numbers Using Computational Singular Perturbation. , 2018, , .		9
107	Characteristics of counterflow premixed flames with low frequency composition fluctuations. Combustion and Flame, 2020, 212, 13-24.	5.2	9
108	Explosive dynamics of bluff-body-stabilized lean premixed hydrogen flames at blow-off. Proceedings of the Combustion Institute, 2021, 38, 2265-2274.	3.9	9

#	Article	IF	CITATIONS
109	An adaptive time-integration scheme for stiff chemistry based on computational singular perturbation and artificial neural networks. Journal of Computational Physics, 2022, 451, 110875.	3.8	9
110	Analysis of Wall–flame Interaction in Laminar Non-premixed Combustion. Combustion Science and Technology, 2022, 194, 337-350.	2.3	8
111	Understanding multi-stage HCCI combustion caused by thermal stratification and chemical three-stage auto-ignition. Proceedings of the Combustion Institute, 2021, 38, 5575-5583.	3.9	8
112	A computational analysis of strained laminar flame propagation in a stratified CH4/H2/air mixture. Proceedings of the Combustion Institute, 2021, 38, 2543-2550.	3.9	8
113	Large Eddy Simulations of Supercritical and Transcritical Jet Flows Using Real Fluid Thermophysical Properties. , 0, , .		8
114	The effect of preheating temperature on PAH/soot formation in methane/air co-flow flames at elevated pressure. Fuel, 2022, 313, 122656.	6.4	8
115	Computational optimization of a hydrogen direct-injection compression-ignition engine for jet mixing dominated nonpremixed combustion. International Journal of Engine Research, 2022, 23, 754-768.	2.3	8
116	A consistent soot nucleation model for improved prediction of strain rate sensitivity in ethylene/air counterflow flames. Aerosol Science and Technology, 2022, 56, 636-654.	3.1	8
117	Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45Âbar BMEP. Energy Conversion and Management, 2022, 264, 115698.	9.2	8
118	An Experimental Study of the Effects of Platinum on Methane/Air and Propane/Air Mixtures in a Stagnation Point Flow Reactor. Journal of Heat Transfer, 2009, 131, .	2.1	7
119	A computational study of droplet evaporation with fuel vapor jet ejection induced by localized heat sources. Physics of Fluids, 2015, 27, 053302.	4.0	7
120	Dynamics of lean premixed flames stabilized on a meso-scale bluff-body in an unconfined flow field. Mathematical Modelling of Natural Phenomena, 2018, 13, 48.	2.4	7
121	Implicitly coupled phase fraction equations for the Eulerian multi-fluid model. Computers and Fluids, 2019, 192, 104277.	2.5	7
122	Prediction of Ignition Regimes in DME/Air Mixtures with Temperature and Concentration Fluctuations. , 2019, , .		7
123	Development of a Eulerian Multi-Fluid Solver for Dense Spray Applications in OpenFOAM. Energies, 2020, 13, 4740.	3.1	7
124	Assessment of Extrapolation Relations of Displacement Speed for Detailed Chemistry Direct Numerical Simulation Database of Statistically Planar Turbulent Premixed Flames. Flow, Turbulence and Combustion, 2022, 108, 489-507.	2.6	7
125	ANALYTICAL MODEL FOR AUTO-IGNITION IN A THERMALLY STRATIFIED HCCI ENGINE. Combustion Science and Technology, 2007, 179, 1963-1989.	2.3	6
126	Time scales in unsteady premixed flame extinction with composition fluctuations. Combustion and Flame, 2007, 150, 404-408.	5.2	6

#	Article	IF	CITATIONS
127	Effects of dilution on the extinction characteristics of strained lean premixed flames assisted by catalytic reaction. Proceedings of the Combustion Institute, 2007, 31, 1189-1195.	3.9	6
128	Auto-ignition of a homogeneous hydrogen–air mixture subjected to unsteady temperature fluctuations. Combustion Theory and Modelling, 2009, 13, 413-425.	1.9	6
129	Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures. Combustion and Flame, 2011, 158, 139-145.	5.2	6
130	Dynamics of flow–soot interaction in wrinkled non-premixed ethylene–air flames. Combustion Theory and Modelling, 2015, 19, 568-586.	1.9	6
131	Large Eddy Simulation on the Effects of Pressure on Syngas/Air Turbulent Nonpremixed Jet Flames. Combustion Science and Technology, 2020, 192, 1963-1996.	2.3	6
132	A comparison of entrainment velocity and displacement speed statistics in different regimes of turbulent premixed combustion. Proceedings of the Combustion Institute, 2021, 38, 2985-2992.	3.9	6
133	Evaporation, break-up, and pyrolysis of multi-component Arabian Light crude oil droplets at various temperatures. International Journal of Heat and Mass Transfer, 2022, 183, 122175.	4.8	6
134	Assessment of subgrid dispersion models for large-eddy simulations of turbulent jet flows with dilute spray droplets. Physics of Fluids, 2022, 34, .	4.0	6
135	A Spray-Interactive Flamelet Model for Direct Injection Engine Combustion. Combustion Science and Technology, 2012, 184, 469-488.	2.3	5
136	Flame-flow interactions and flow reversal. Combustion and Flame, 2012, 159, 1489-1498.	5.2	5
137	Scalar dissipation rate transport conditional on flow topologies in different regimes of premixed turbulent combustion. Proceedings of the Combustion Institute, 2019, 37, 2353-2361.	3.9	5
138	Effects of Differential Diffusion on the Stabilization of Unsteady Lean Premixed Flames Behind a Bluff-Body. Flow, Turbulence and Combustion, 2021, 106, 1125-1141.	2.6	5
139	In-cylinder visualization and engine out emissions from CI to PPC for fuels with different properties. The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2017, 2017.9, C310.	0.1	5
140	A computational study of thermally induced secondary atomization in multicomponent droplets. Journal of Fluid Mechanics, 2022, 935, .	3.4	5
141	Conditioned structure functions in turbulent hydrogen/air flames . Physics of Fluids, 0, , .	4.0	5
142	A Pathway to Ultra-Lean IC Engine Combustion: The Narrow Throat Pre-chamber. Energy, Environment, and Sustainability, 2022, , 175-203.	1.0	4
143	Alignment statistics of pressure Hessian with strain rate tensor and reactive scalar gradient in turbulent premixed flames. Physics of Fluids, 2022, 34, .	4.0	4
144	Near wall effects on the premixed head-on hydrogen/air flame. Combustion and Flame, 2022, 244, 112267.	5.2	4

#	Article	IF	CITATIONS
145	Effects of Scalar Dissipation Rate Fluctuations on Autoignition of Hydrogen/Air Mixture. AIAA Journal, 2009, 47, 468-472.	2.6	3
146	New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion. Energy & Fuels, 2016, 30, 9814-9818.	5.1	3
147	Dynamics Analysis of a Turbulent Methane Flame in MILD Combustion Conditions. , 2019, , .		3
148	An analysis of soot formation pathways in laminar coflow ethylene flame at higher pressures. , 2020, ,		3
149	Three-stage auto-ignition of n-heptane and methyl-cyclohexane mixtures at lean conditions in a flat piston rapid compression machine. Proceedings of the Combustion Institute, 2021, 38, 5539-5548.	3.9	3
150	A Computational Study of Ammonia Combustion in MILD Conditions. , 2021, , .		3
151	An Improved Prediction of Pre-Combustion Processes, Using the Discrete Multicomponent Model. Sustainability, 2021, 13, 2937.	3.2	3
152	Direct Numerical Simulation ofÂPreignition and Knock in Engine Conditions. Green Energy and Technology, 2022, , 311-336.	0.6	3
153	The Effects of Platinum on Propane/Air Stagnation Flow Flames. Combustion Science and Technology, 2011, 183, 540-553.	2.3	2
154	Near-blowoff dynamics of lean premixed flames stabilized on a meso-scale bluff body. , 2016, , .		2
155	Direct Numerical Simulations for Combustion Science: Past, Present, and Future. Energy, Environment, and Sustainability, 2018, , 99-132.	1.0	2
156	Probabilistic Approach to Predict Abnormal Combustion in Spark Ignition Engines. , 2018, , .		2
157	A Computational Study of Abnormal Combustion Characteristics in Spark Ignition Engines. SAE International Journal of Engines, 2018, 11, 743-755.	0.4	2
158	Computational investigation of rod-stabilized laminar premixed hydrogen–methane–air flames. , 2020, , , .		2
159	A method to convert stand-alone OH fluorescence images into OH mole fraction. Proceedings of the Combustion Institute, 2021, 38, 1771-1778.	3.9	2
160	Large eddy simulation with flamelet progress variable approach combined with artificial neural network acceleration. , 2021, , .		2
161	A Eulerian Multi-Fluid Model for High-Speed Evaporating Sprays. Processes, 2021, 9, 941.	2.8	2
162	Extinction of non-equidiffusive premixed flames with oscillating strain rates. Combustion and Flame, 2021, 234, 111617.	5.2	2

#	Article	IF	CITATIONS
163	Development of a CFD Solver for Primary Diesel Jet Atomization in FOAM-Extend. , 0, , .		2
164	Local combustion regime identification using machine learning. Combustion Theory and Modelling, 2022, 26, 135-151.	1.9	2
165	Double Compression-Expansion Engine (DCEE) Fueled with Hydrogen: Preliminary Computational Assessment. Transportation Engineering, 2022, , 100103.	4.2	2
166	Numerical model of an ultrasonically induced cavitation reactor and application to heavy oil processing. Chemical Engineering Journal Advances, 2022, 12, 100362.	5.2	2
167	Direct Numerical Simulation of Non-Premixed Flame Extinction by Water Spray. , 2010, , .		1
168	Implicitly coupled phase fraction equations for polydisperse flows. International Journal for Numerical Methods in Fluids, 2021, 93, 1627-1644.	1.6	1
169	Study on coherent structures for high turbulence burner. , 2021, , .		1
170	Modeling of Gasoline Direct Injection Mixture Formation with KIVA-3V and Validation with Optical Engine Planar Laser Induced Fluorescence Measurements : Development of an Extended Coherent Flamelet Model(S.I. Engines, G.D.I. Modelling). The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2004, 2004.6, 537-544.	0.1	1
171	Characteristics of Methanol and Iso-Octane Under Flashing and Non-Flashing Conditions in ECN-G Spray. , 0, , .		1
172	A computational study of soot formation in opposed-flow diffusion flame interacting with vortices. , 2017, , .		0
173	The instability characteristics of lean premixed hydrogen and syngas flames stabilized on meso-scale bluff-body. , 2017, , .		0
174	DNS of Lean Hydrogen Turbulent Premixed Flames at High Karlovitz Number Conditions. , 2020, , .		0
175	Nodeling of Gasoline Direct Injection Mixture Formation Using KIVA-3V : Development of Spray Breakup & Wall Impingement Models and Validation with Optical Engine Planar Laser Induced Fluorescence Measurements.(S.I. Engines, G.D.I. Modelling). The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2004, 2004.6,	0.1	0
176	Knock propensity in a thermally inhomogeneous DME/air mixture: a DNS study. , 2022, , .		0
177	Flame-controlling continuation method for extinction of counterflow sooting flames with detailed chemistry. , 2022, , .		Ο