
## Davide Spadaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/99521/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science and Technology, 2016, 47, 39-49.                                    | 7.8 | 490       |
| 2  | State of the art and future prospects of the biological control of postharvest fruit diseases.<br>International Journal of Food Microbiology, 2004, 91, 185-194.                                                                              | 2.1 | 303       |
| 3  | The science, development, and commercialization of postharvest biocontrol products. Postharvest<br>Biology and Technology, 2016, 122, 22-29.                                                                                                  | 2.9 | 271       |
| 4  | Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protection, 2005, 24, 601-613.                                                                                                                                  | 1.0 | 225       |
| 5  | Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and<br>Penicillium expansum in apples through iron depletion. Postharvest Biology and Technology, 2008, 49,<br>121-128.                             | 2.9 | 189       |
| 6  | The redox switch: dynamic regulation of protein function by cysteine modifications. Physiologia<br>Plantarum, 2010, 138, 360-371.                                                                                                             | 2.6 | 178       |
| 7  | Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Protection, 2006, 25, 468-475.                                                                                   | 1.0 | 172       |
| 8  | Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biology and Technology, 2002, 24, 123-134.                                              | 2.9 | 148       |
| 9  | Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple<br>and plum and its modes of action. Biological Control, 2010, 54, 172-180.                                                              | 1.4 | 103       |
| 10 | Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins, 2016, 8, 125.                                                                                                                                                   | 1.5 | 103       |
| 11 | Potential biocontrol activity of a strain of Pichia guilliermondii against grey mold of apples and its possible modes of action. Biological Control, 2011, 57, 193-201.                                                                       | 1.4 | 101       |
| 12 | Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. BMC Genomics, 2016, 17, 608.                                                                        | 1.2 | 99        |
| 13 | Molecular identification of <i>Fusarium</i> spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathology, 2010, 59, 839-844.                                                                  | 1.2 | 98        |
| 14 | Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot<br>water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biology and<br>Technology, 2004, 33, 141-151. | 2.9 | 95        |
| 15 | Selection and evaluation of new antagonists for their efficacy against postharvest brown rot of peaches. Postharvest Biology and Technology, 2010, 55, 174-181.                                                                               | 2.9 | 95        |
| 16 | Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytologist, 2018, 220,<br>1296-1308.                                                                                                                       | 3.5 | 93        |
| 17 | Incidence and level of patulin contamination in pure and mixed apple juices marketed in Italy. Food<br>Control, 2007, 18, 1098-1102.                                                                                                          | 2.8 | 92        |
| 18 | Efficacy of Plant Essential Oils on Postharvest Control of Rots Caused by Fungi on Different Stone<br>Fruits In Vivo, Journal of Food Protection, 2013, 76, 631-639,                                                                          | 0.8 | 91        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fungal Planet description sheets: 1042–1111. Persoonia: Molecular Phylogeny and Evolution of Fungi,<br>2020, 44, 301-459.                                                                                                                                      | 1.6 | 91        |
| 20 | Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples <i>in vivo</i> . Flavour and Fragrance Journal, 2010, 25, 171-177.                                                                                  | 1.2 | 89        |
| 21 | A new method for detection of five alternaria toxins in food matrices based on LC–APCI-MS. Food<br>Chemistry, 2013, 140, 161-167.                                                                                                                              | 4.2 | 80        |
| 22 | A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biology and Technology, 2013, 75, 1-8.                                                               | 2.9 | 79        |
| 23 | Effect of culture media and pH on the biomass production and biocontrol efficacy of<br>a <i>Metschnikowia pulcherrima</i> strain to be used as a biofungicide for postharvest disease<br>control. Canadian Journal of Microbiology, 2010, 56, 128-137.         | 0.8 | 72        |
| 24 | Postharvest application of a novel chitinase cloned from Metschnikowia fructicola and<br>overexpressed in Pichia pastoris to control brown rot of peaches. International Journal of Food<br>Microbiology, 2015, 199, 54-61.                                    | 2.1 | 72        |
| 25 | Cloning, characterization, expression and antifungal activity of an alkaline serine protease of<br>Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens.<br>International Journal of Food Microbiology, 2012, 153, 453-464. | 2.1 | 70        |
| 26 | Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum.<br>BMC Genomics, 2016, 17, 19.                                                                                                                                | 1.2 | 70        |
| 27 | Jasmonic Acid, Abscisic Acid, and Salicylic Acid Are Involved in the Phytoalexin Responses of Rice to<br><i>Fusarium fujikuroi</i> , a High Gibberellin Producer Pathogen. Journal of Agricultural and Food<br>Chemistry, 2015, 63, 8134-8142.                 | 2.4 | 68        |
| 28 | Potential of yeast antagonists on invitro biodegradation of ochratoxin A. Food Control, 2011, 22, 290-296.                                                                                                                                                     | 2.8 | 67        |
| 29 | Co-occurrence of aflatoxins and ochratoxin A in spices commercialized in Italy. Food Control, 2014, 39, 192-197.                                                                                                                                               | 2.8 | 66        |
| 30 | Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as<br>potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control, 2018, 89,<br>300-307.                                              | 2.8 | 65        |
| 31 | Global analysis of the apple fruit microbiome: are all apples the same?. Environmental Microbiology, 2021, 23, 6038-6055.                                                                                                                                      | 1.8 | 64        |
| 32 | Genome Sequence, Assembly and Characterization of Two Metschnikowia fructicola Strains Used as<br>Biocontrol Agents of Postharvest Diseases. Frontiers in Microbiology, 2018, 9, 593.                                                                          | 1.5 | 58        |
| 33 | Development of a microcantilever-based immunosensing method for mycotoxin detection. Biosensors and Bioelectronics, 2013, 40, 233-239.                                                                                                                         | 5.3 | 57        |
| 34 | Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima<br>strain MACH1 used as post-harvest biocontrol agent. European Journal of Plant Pathology, 2009, 123,<br>183-193.                                       | 0.8 | 56        |
| 35 | Thyme and Savory Essential Oil Efficacy and Induction of Resistance against Botrytis cinerea through<br>Priming of Defense Responses in Apple. Foods, 2018, 7, 11.                                                                                             | 1.9 | 55        |
| 36 | Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant<br>Pathogens. Microorganisms, 2021, 9, 188.                                                                                                                         | 1.6 | 55        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | First Report of Brown Rot of Stone Fruit Caused by <i>Monilinia fructicola</i> in Italy. Plant Disease, 2009, 93, 668-668.                                                                                                | 0.7 | 55        |
| 38 | Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold. Foods, 2018, 7, 7.                                                | 1.9 | 52        |
| 39 | Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus<br>growth and aflatoxins production on pistachio. International Journal of Food Microbiology, 2017,<br>254, 47-53. | 2.1 | 51        |
| 40 | Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple. International Journal of Food Microbiology, 2014, 182-183, 1-8. | 2.1 | 48        |
| 41 | Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium<br>proliferatum from diseased rice tissues and seeds. European Journal of Plant Pathology, 2012, 134,<br>401-408.                | 0.8 | 46        |
| 42 | Identification of bakanae disease resistance loci in japonica rice through genome wide association study. Rice, 2017, 10, 29.                                                                                             | 1.7 | 43        |
| 43 | Use of AFLP for differentiation of Metschnikowia pulcherrima strains for postharvest disease<br>biological control. Microbiological Research, 2008, 163, 523-530.                                                         | 2.5 | 40        |
| 44 | Characterization of Citrus-Associated Alternaria Species in Mediterranean Areas. PLoS ONE, 2016, 11, e0163255.                                                                                                            | 1.1 | 39        |
| 45 | Influence of plant genotype on the cultivable fungiÂassociated to tomato rhizosphere and roots in<br>different soils. Fungal Biology, 2016, 120, 862-872.                                                                 | 1.1 | 39        |
| 46 | Potential of patulin production by Penicillium expansum strains on various fruits. Mycotoxin<br>Research, 2010, 26, 257-265.                                                                                              | 1.3 | 38        |
| 47 | The puzzle of bakanae disease through interactions between Fusarium fujikuroi and rice. Frontiers in<br>Bioscience - Elite, 2017, 9, 333-344.                                                                             | 0.9 | 38        |
| 48 | Antagonistic yeasts and thermotherapy as seed treatments to control Fusarium fujikuroi on rice.<br>Biological Control, 2014, 73, 59-67.                                                                                   | 1.4 | 37        |
| 49 | Occurrence of patulin and its dietary intake through pear, peach, and apricot juices in Italy. Food<br>Additives and Contaminants: Part B Surveillance, 2008, 1, 134-139.                                                 | 1.3 | 35        |
| 50 | Efficacy of different chemical and biological products in the control of Pseudomonas syringae pv.<br>actinidiae on kiwifruit. Australasian Plant Pathology, 2015, 44, 13-23.                                              | 0.5 | 33        |
| 51 | Development and Validation of a TaqMan Real-Time PCR Assay for the Specific Detection and<br>Quantification of <i>Fusarium fujikuroi</i> in Rice Plants and Seeds. Phytopathology, 2017, 107, 885-892.                    | 1.1 | 33        |
| 52 | Scientific information on mycotoxins and natural plant toxicants. EFSA Supporting Publications, 2009, 6, 24E.                                                                                                             | 0.3 | 32        |
| 53 | Cloning, characterization and expression of an exo-1,3-β-glucanase gene from the antagonistic yeast,<br>Pichia guilliermondii strain M8 against grey mold on apples. Biological Control, 2011, 59, 284-293.               | 1.4 | 32        |
| 54 | Comparison of Clean-Up Methods for Ochratoxin A on Wine, Beer, Roasted Coffee and Chili<br>Commercialized in Italy. Toxins, 2013, 5, 1827-1844.                                                                           | 1.5 | 32        |

| #  | Article                                                                                                                                                                                                                                                                  | IF        | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 55 | Characterization of Aspergillus section Flavi isolated from fresh chestnuts and along the chestnut flour process. Food Microbiology, 2018, 69, 159-169.                                                                                                                  | 2.1       | 31           |
| 56 | Phomopsins: an overview of phytopathological and chemical aspects, toxicity, analysis and occurrence. World Mycotoxin Journal, 2011, 4, 345-359.                                                                                                                         | 0.8       | 31           |
| 57 | Light affects fumonisin production in strains of Fusarium fujikuroi, Fusarium proliferatum, and<br>Fusarium verticillioides isolated from rice. International Journal of Food Microbiology, 2013, 166,<br>515-523.                                                       | 2.1       | 30           |
| 58 | Several species of Penicillium isolated from chestnut flour processing are pathogenic on fresh chestnuts and produce mycotoxins. Food Microbiology, 2018, 76, 396-404.                                                                                                   | 2.1       | 30           |
| 59 | Occurrence of ochratoxin A before bottling in DOC and DOCG wines produced in Piedmont (Northern) Tj ETQq1                                                                                                                                                                | 1 9.78431 | 4 rgBT /Ovei |
| 60 | Increase in aflatoxins due to Aspergillus section Flavi multiplication during the aerobic deterioration of corn silage treated with different bacteria inocula. Journal of Dairy Science, 2019, 102, 1176-1193.                                                          | 1.4       | 29           |
| 61 | Potential of Two Metschnikowia pulcherrima (Yeast) Strains for In Vitro Biodegradation of Patulin.<br>Journal of Food Protection, 2011, 74, 154-156.                                                                                                                     | 0.8       | 28           |
| 62 | Genetic diversity and virulence of Italian strains of Fusarium oxysporum isolated from Eustoma grandiflorum. European Journal of Plant Pathology, 2015, 141, 83-97.                                                                                                      | 0.8       | 28           |
| 63 | Use of 1-methylcylopropene in cyclodextrin-based nanosponges to control grey mould caused by<br>Botrytis cinerea on Dianthus caryophyllus cut flowers. Postharvest Biology and Technology, 2012, 64,<br>55-57.                                                           | 2.9       | 27           |
| 64 | Alcohol misuse among recent Latino immigrants: The protective role of preimmigration familismo<br>Psychology of Addictive Behaviors, 2013, 27, 956-965.                                                                                                                  | 1.4       | 27           |
| 65 | Development of Loop-Mediated Isothermal Amplification Assays for the Detection of Seedborne Fungal<br>Pathogens <i>Fusarium fujikuroi</i> and <i>Magnaporthe oryzae</i> in Rice Seed. Plant Disease, 2018,<br>102, 1549-1558.                                            | 0.7       | 26           |
| 66 | Photoselective exclusion netting in apple orchards: effectiveness against pests and impact on beneficial arthropods, fungal diseases and fruit quality. Pest Management Science, 2020, 76, 179-187.                                                                      | 1.7       | 24           |
| 67 | Ochratoxigenic Black Species of Aspergilli in Grape Fruits of Northern Italy Identified by an Improved PCR-RFLP Procedure. Toxins, 2012, 4, 42-54.                                                                                                                       | 1.5       | 23           |
| 68 | Aflatoxin monitoring in Italian hazelnut products by LC-MS. Food Additives and Contaminants: Part B<br>Surveillance, 2012, 5, 279-285.                                                                                                                                   | 1.3       | 23           |
| 69 | Evolution of fungal populations in corn silage conserved under polyethylene or biodegradable films.<br>Journal of Applied Microbiology, 2015, 119, 510-520.                                                                                                              | 1.4       | 23           |
| 70 | Rapid detection of <i>Fusarium oxysporum</i> f. sp. <i>lactucae</i> on soil, lettuce seeds and plants using loopâ€mediated isothermal amplification. Plant Pathology, 2018, 67, 1462-1473.                                                                               | 1.2       | 23           |
| 71 | Effectiveness of control strategies against <i>Botrytis cinerea</i> in vineyard and evaluation of the residual fungicide concentrations. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44, 389-396. | 0.7       | 21           |
| 72 | First Report of Phytopythium vexans Causing Decline Syndrome of Actinidia deliciosa â€~Hayward' in<br>Italy. Plant Disease, 2020, 104, 2032.                                                                                                                             | 0.7       | 21           |

| #  | Article                                                                                                                                                                                                                                    | IF               | CITATIONS   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 73 | Effect of Drying Temperatures and Exposure Times on Aspergillus flavus Growth and Aflatoxin<br>Production on Artificially Inoculated Hazelnuts. Journal of Food Protection, 2020, 83, 1241-1247.                                           | 0.8              | 21          |
| 74 | Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts. Toxins, 2017, 9, 72.                                                                                                           | 1.5              | 20          |
| 75 | Effect of culture age, protectants, and initial cell concentration on viability of freeze-dried cells of <i>Metschnikowia pulcherrima </i> . Canadian Journal of Microbiology, 2010, 56, 809-815.                                          | 0.8              | 19          |
| 76 | Rapid Detection of <i>Monilinia fructicola</i> and <i>Monilinia laxa</i> on Peach and Nectarine using Loop-Mediated Isothermal Amplification. Plant Disease, 2019, 103, 2305-2314.                                                         | 0.7              | 19          |
| 77 | Characterizing the Fungal Microbiome in Date (Phoenix dactylifera) Fruit Pulp and Peel from Early<br>Development to Harvest. Microorganisms, 2020, 8, 641.                                                                                 | 1.6              | 19          |
| 78 | Genetic diversity and pathogenicity of Fusarium oxysporum isolated from wilted rocket plants in Italy.<br>Phytoparasitica, 2012, 40, 157-170.                                                                                              | 0.6              | 17          |
| 79 | Candida pruni sp. nov. is a new yeast species with antagonistic potential against brown rot of peaches.<br>Archives of Microbiology, 2014, 196, 525-530.                                                                                   | 1.0              | 15          |
| 80 | Efficacy of yeast antagonists used individually or in combination with hot water dipping for control of postharvest brown rot of peaches. Journal of Plant Diseases and Protection, 2010, 117, 226-232.                                    | 1.6              | 14          |
| 81 | Pseudomonas syringae pv. actinidiae isolated from Actinidia chinensis Var. deliciosa in Northern Italy:<br>genetic diversity and virulence. European Journal of Plant Pathology, 2018, 150, 191-204.                                       | 0.8              | 14          |
| 82 | Specific PCR primers for the detection of isolates of Aspergillus carbonarius producing ochratoxin A on grapevine. Annals of Microbiology, 2011, 61, 267-272.                                                                              | 1.1              | 13          |
| 83 | Elaborated regulation of griseofulvin biosynthesis in Penicillium griseofulvum and its role on conidiation and virulence. International Journal of Food Microbiology, 2020, 328, 108687.                                                   | 2.1              | 13          |
| 84 | Monitoring and Surveillance of Aerial Mycobiota of Rice Paddy through DNA Metabarcoding and qPCR. Journal of Fungi (Basel, Switzerland), 2020, 6, 372.                                                                                     | 1.5              | 12          |
| 85 | First Report of <i>Penicillium glabrum</i> Causing a Postharvest Fruit Rot of Pomegranate ( <i>Punica) Tj ETQq1</i>                                                                                                                        | l 0.78431<br>0.7 | 4 rgBT /Ove |
| 86 | First Report of <i>Diaporthe eres</i> Causing Stem Canker on Peach ( <i>Prunus persica</i> ) in Italy.<br>Plant Disease, 2017, 101, 1052-1052.                                                                                             | 0.7              | 11          |
| 87 | Abundance, genetic diversity and sensitivity to demethylation inhibitor fungicides of <i>Aspergillus<br/>fumigatus</i> isolates from organic substrates with special emphasis on compost. Pest Management<br>Science, 2017, 73, 2481-2494. | 1.7              | 11          |
| 88 | Chestnut Drying Is Critical in Determining Aspergillus flavus Growth and Aflatoxin Contamination.<br>Toxins, 2018, 10, 530.                                                                                                                | 1.5              | 11          |
| 89 | Different Phenotypes, Similar Genomes: Three Newly Sequenced Fusarium fujikuroi Strains Induce<br>Different Symptoms in Rice Depending on Temperature. Phytopathology, 2020, 110, 656-665.                                                 | 1.1              | 11          |

90 Presence of Powdery Mildew Caused by <i>Erysiphe corylacearum</i> on Hazelnut (<i>Corylus) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 62 Overlock 10 Tf 50 0verlock 10 Tf 50 0verlock 10 Tf 50 0verlock 10 Tf 50 0verlock 10 T

6

| #   | Article                                                                                                                                                                                                               | IF               | CITATIONS            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| 91  | Molecular characterization of Fusarium oxysporum f.sp. cichorii pathogenic on chicory (Cichorium) Tj ETQq1 1 0.                                                                                                       | .784314 r<br>0.6 | gB <u>T</u> /Overloc |
| 92  | New Molecular Tool for a Quick and Easy Detection of Apple Scab in the Field. Agronomy, 2020, 10, 581.                                                                                                                | 1.3              | 10                   |
| 93  | CRISPR-Cas9-Based Discovery of the Verrucosidin Biosynthesis Gene Cluster in Penicillium polonicum.<br>Frontiers in Microbiology, 2021, 12, 660871.                                                                   | 1.5              | 10                   |
| 94  | First Report of <i>Tilletiopsis pallescens</i> Causing White Haze on Apple in Croatia. Plant Disease, 2016, 100, 225-225.                                                                                             | 0.7              | 10                   |
| 95  | First Report of Fruit Rot in European Pear Caused by Diaporthe eres in Italy. Plant Disease, 2018, 102, 2651-2651.                                                                                                    | 0.7              | 9                    |
| 96  | Organic seed treatments of vegetables to prevent seedborne diseases. Acta Horticulturae, 2017, , 23-32.                                                                                                               | 0.1              | 8                    |
| 97  | Not only priming: Soil microbiota may protect tomato from root pathogens. Plant Signaling and Behavior, 2018, 13, 1-9.                                                                                                | 1.2              | 8                    |
| 98  | Development of PCR, LAMP and qPCR Assays for the Detection of Aflatoxigenic Strains of Aspergillus flavus and A. parasiticus in Hazelnut. Toxins, 2020, 12, 757.                                                      | 1.5              | 8                    |
| 99  | First Multi-Target Application of Exclusion Net in Nectarine Orchards: Effectiveness against Pests and<br>Impact on Beneficial Arthropods, Postharvest Rots and Fruit Quality. Insects, 2021, 12, 210.                | 1.0              | 8                    |
| 100 | Pathogenicity of <i>Phytopythium chamaehyphon</i> : A New Player in Kiwifruit Vine Decline Syndrome<br>of <i>Actinidia chinensis</i> var. <i>deliciosa</i> â€~Hayward' in Italy. Plant Disease, 2021, 105, 2781-2784. | 0.7              | 8                    |
| 101 | Development of a Sensitive TaqMan qPCR Assay for Detection and Quantification of <i>Venturia inaequalis</i> in Apple Leaves and Fruit and in Air Samples. Plant Disease, 2020, 104, 2851-2859.                        | 0.7              | 8                    |
| 102 | Unraveling the mechanisms used by antagonistic yeast to control postharvest pathogens on fruit.<br>Acta Horticulturae, 2016, , 63-70.                                                                                 | 0.1              | 7                    |
| 103 | HPLC-MS/MS Method for the Detection of Selected Toxic Metabolites Produced by Penicillium spp. in<br>Nuts. Toxins, 2020, 12, 307.                                                                                     | 1.5              | 7                    |
| 104 | First Report of <i>Erysiphe corylacearum</i> , Agent of Powdery Mildew, on Hazelnut ( <i>Corylus) Tj ETQq0 0 0 r</i>                                                                                                  | gBT [Over<br>0.7 | lock 10 Tf 50        |
| 105 | Effect of bacterial canker caused by Pseudomonas syringae pv. actinidiae on postharvest quality and rots of kiwifruit †Hayward'. Postharvest Biology and Technology, 2016, 113, 119-124.                              | 2.9              | 6                    |
| 106 | First Report of <i>Penicillium griseofulvum</i> Causing Blue Mold on Stored Apples in Italy<br>(Piedmont). Plant Disease, 2011, 95, 76-76.                                                                            | 0.7              | 6                    |
| 107 | Stone Fruits. , 2019, , 111-140.                                                                                                                                                                                      |                  | 6                    |

Use of Essential Oils to Control Postharvest Rots on Pome and Stone Fruit. , 2014, , 101-110.

7

| #   | Article                                                                                                                                                                                                               | IF               | CITATIONS                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| 109 | Diagnostics and Identification of Diseases, Insects and Mites. , 2020, , 231-258.                                                                                                                                     |                  | 5                        |
| 110 | First Report of Nut Rot Caused by <i>Neofusicoccum parvum</i> on Hazelnut ( <i>Corylus) Tj ETQq0 0 0 rgBT /Ov</i>                                                                                                     | verlock 10       | Tf <sub>5</sub> 50 702 T |
| 111 | THE ROLE OF COMPETITION FOR IRON AND CELL WALL DEGRADING ENZYMES IN MECHANISM OF ACTION OF POSTHARVEST BIOCONTROL AGENTS. Acta Horticulturae, 2011, , 87-102.                                                         | 0.1              | 4                        |
| 112 | Aspergillus fumigatus population dynamics and sensitivity to demethylation inhibitor fungicides in<br>wholeâ€crop corn, high moisture corn and wet grain corn silages. Pest Management Science, 2020, 76,<br>685-694. | 1.7              | 4                        |
| 113 | First Report of <i>Stemphylium eturmiunum</i> Causing Postharvest Rot on Tomato ( <i>Solanum) Tj ETQq1 1 0.</i>                                                                                                       | .784314 r<br>0.7 | gBŢ /Overloc             |
| 114 | Sequencing of non-virulent strains of Fusarium fujikuroi reveals genes putatively involved in bakanae<br>disease of rice. Fungal Genetics and Biology, 2021, 156, 103622.                                             | 0.9              | 4                        |
| 115 | Opportunities and constraints in the development of antagonistic yeasts for the control of postharvest diseases of fruit. Stewart Postharvest Review, 0, 6, 1-8.                                                      | 0.7              | 4                        |
| 116 | DISCOVERY, DEVELOPMENT AND TECHNOLOGY TRANSFER OF BIOCONTROL AGENTS FOR POSTHARVEST DISEASE CONTROL. Acta Horticulturae, 2014, , 23-36.                                                                               | 0.1              | 3                        |
| 117 | Containment of Mycotoxins in the Food Chain by Using Decontamination and Detoxification Techniques. , 2017, , 163-177.                                                                                                |                  | 3                        |
| 118 | Biocontrol of Postharvest Diseases with Antagonistic Microorganisms. , 2019, , 463-498.                                                                                                                               |                  | 3                        |
| 119 | Essential oils to control postharvest diseases of apples and peaches: elucidation of the mechanism of action. Acta Horticulturae, 2021, , 35-42.                                                                      | 0.1              | 3                        |
| 120 | Pome Fruits. , 2019, , 55-110.                                                                                                                                                                                        |                  | 3                        |
| 121 | Smart micro-sensing: Antibodies and aptamer-based micro-ELISA as performing offline/on line tool for allergens and mycotoxins detection in foods. , 2017, , .                                                         |                  | 2                        |
| 122 | First Report of Brown Rot Caused by <i>Monilinia polystroma</i> on Apple in Italy. Plant Disease, 2021, 105, 3761.                                                                                                    | 0.7              | 2                        |
| 123 | Optimization of a Loop-Mediated Isothermal Amplification Assay for On-Site Detection of Fusarium fujikuroi in Rice Seed. Agronomy, 2021, 11, 1580.                                                                    | 1.3              | 2                        |
| 124 | Low levels of ochratocin A in wines from Piedmont. Communications in Agricultural and Applied Biological Sciences, 2007, 72, 327-32.                                                                                  | 0.0              | 2                        |
| 125 | EFFICACY OF BIOCONTROL YEASTS AGAINST PENICILLIUM EXPANSUM AND PATULIN ON DIFFERENT CULTIVARS OF APPLE IN POSTHARVEST. Acta Horticulturae, 2010, , 191-196.                                                           | 0.1              | 1                        |
| 126 | Potential of ochratoxin A production by <i>Aspergillus carbonarius</i> strains isolated from grapes<br>at different ecological factors. Archives of Phytopathology and Plant Protection, 2011, 44, 1802-1814.         | 0.6              | 1                        |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Imaging the invasion of rice roots by the bakanae agent Fusarium fujikuroi using a GFP-tagged isolate.<br>European Journal of Plant Pathology, 2021, 161, 25-36.                | 0.8 | 1         |
| 128 | First Report of <i>Sclerotinia sclerotiorum</i> Causing Postharvest Sclerotinia Rot on Highbush<br>Blueberry in Europe. Plant Disease, 2015, 99, 1648-1648.                     | 0.7 | 1         |
| 129 | Sustainable Management of Plant Diseases. , 2019, , 337-359.                                                                                                                    |     | 1         |
| 130 | Innovative Strategies for the ManagementÂof Aspergillus spp. and Penicillium spp. on Nuts. Plant<br>Pathology in the 21st Century, 2021, , 111-127.                             | 0.6 | 1         |
| 131 | Phylogenecity and sequence alignment ofFusariummycotoxin gene (Fum 5) with other mycotoxin producing fungi. Archives of Phytopathology and Plant Protection, 2011, 44, 426-431. | 0.6 | 0         |
| 132 | De novo sequencing and detection of secondary metabolite gene clusters of <i>Penicillium griseofulvum</i> . Acta Horticulturae, 2016, , 157-162.                                | 0.1 | 0         |
| 133 | Molecular differentiation of plant beneficial <i>Bacillus</i> strains useful as soil agro-inoculants.<br>Acta Horticulturae, 2017, , 257-264.                                   | 0.1 | 0         |
| 134 | Diagnosis and Assessment of Some Fungal Pathogens of Rice: Novel Methods Bring New Opportunities.<br>Plant Pathology in the 21st Century, 2021, , 195-214.                      | 0.6 | 0         |
| 135 | INTEGRATED APPROACHES FOR SOIL DISINFESTATION. Acta Horticulturae, 2005, , 91-98.                                                                                               | 0.1 | 0         |
| 136 | Postharvest quality and health of kiwifruit â€~Hayward' affected by <i>Pseudomonas syringae</i> pv.<br><i>actinidiae</i> . Acta Horticulturae, 2019, , 91-96.                   | 0.1 | 0         |
| 137 | Advances in the use of biological control agents in the disinfection of horticultural produce.<br>Burleigh Dodds Series in Agricultural Science, 2020, , 325-352.               | 0.1 | Ο         |