Huawen Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/995059/publications.pdf

Version: 2024-02-01

		30047	36687	
196	9,518	54	83	
papers	citations	h-index	g-index	
199	199	199	5377	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Transition metal-catalyzed C–H functionalization of N-oxyenamine internal oxidants. Chemical Society Reviews, 2015, 44, 1155-1171.	18.7	488
2	Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chemical Communications, 2019, 55, 5408-5419.	2.2	423
3	TBHP/I ₂ -Mediated Domino Oxidative Cyclization for One-Pot Synthesis of Polysubstituted Oxazoles. Organic Letters, 2010, 12, 5561-5563.	2.4	180
4	Conversion of Pyridine to Imidazo[1,2- <i>a</i>]pyridines by Copper-Catalyzed Aerobic Dehydrogenative Cyclization with Oxime Esters. Organic Letters, 2013, 15, 6254-6257.	2.4	166
5	O-Acyl oximes: versatile building blocks for N-heterocycle formation in recent transition metal catalysis. Organic and Biomolecular Chemistry, 2016, 14, 1519-1530.	1.5	166
6	Internal Oxidantâ€Triggered Aerobic Oxygenation and Cyclization of Indoles under Copper Catalysis. Angewandte Chemie - International Edition, 2016, 55, 307-311.	7.2	164
7	K ⁺ pre-intercalated manganese dioxide with enhanced Zn ²⁺ diffusion for high rate and durable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20806-20812.	5.2	145
8	4CzIPN- ^{<i>t</i>} Bu-Catalyzed Proton-Coupled Electron Transfer for Photosynthesis of Phosphorylated <i>N</i> -Heteroaromatics. Journal of the American Chemical Society, 2021, 143, 964-972.	6.6	135
9	Visible-Light Induced Radical Perfluoroalkylation/Cyclization Strategy To Access 2-Perfluoroalkylbenzothiazoles/Benzoselenazoles by EDA Complex. Organic Letters, 2019, 21, 4019-4024.	2.4	121
10	Recent advances in visible-light-mediated organic transformations in water. Green Chemistry, 2021, 23, 232-248.	4.6	119
11	Chemoselective cross-coupling reaction of sodium sulfinates with phenols under aqueous conditions. Green Chemistry, 2016, 18, 1538-1546.	4.6	115
12	Silver-catalyzed decarboxylative radical cascade cyclization toward benzimidazo[2,1- <i>a</i>)]isoquinolin-6(5 <i>H</i>)-ones. Chemical Communications, 2019, 55, 2861-2864.	2.2	114
13	Indole-to-Carbazole Strategy for the Synthesis of Substituted Carbazoles under Metal-Free Conditions. Organic Letters, 2016, 18, 5384-5387.	2.4	111
14	Copper-catalyzed oxidative $[2+2+1]$ cycloaddition: regioselective synthesis of 1,3-oxazoles from internal alkynes and nitriles. Chemical Science, 2012, 3, 3463.	3.7	109
15	Copperâ€Catalyzed Intermolecular Oxidative Cyclization of Haloâ€alkynes: Synthesis of 2â€Haloâ€substituted Imidazo[1,2â€ <i>a</i>]pyridines, Imidazo[1,2â€ <i>a</i>]pyrazines and Imidazo[1,2â€ <i>a</i>]pyrimidines. Advanced Synthesis and Catalysis, 2013, 355, 2263-2273.	2.1	109
16	Photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones. Chinese Journal of Catalysis, 2021, 42, 1921-1943.	6.9	109
17	Copper-Catalyzed Formal C–N Bond Cleavage of Aromatic Methylamines: Assembly of Pyridine Derivatives. Journal of Organic Chemistry, 2013, 78, 3774-3782.	1.7	102
18	Metal-Free Synthesis of 2-Aminobenzothiazoles via Aerobic Oxidative Cyclization/Dehydrogenation of Cyclohexanones and Thioureas. Organic Letters, 2013, 15, 2604-2607.	2.4	102

#	Article	IF	Citations
19	Bromide-Promoted Visible-Light-Induced Reductive Minisci Reaction with Aldehydes. ACS Catalysis, 2020, 10, 154-159.	5.5	102
20	Catalytic dehydrogenative aromatization: an alternative route to functionalized arenes. Organic Chemistry Frontiers, 2015, 2, 279-287.	2.3	98
21	Acyl Radicals from î±-Keto Acids: Metal-Free Visible-Light-Promoted Acylation of Heterocycles. Organic Letters, 2021, 23, 2976-2980.	2.4	96
22	Visible light-induced recyclable g-C ₃ N ₄ catalyzed thiocyanation of C(sp ²)â€"H bonds in sustainable solvents. Green Chemistry, 2021, 23, 3677-3682.	4.6	96
23	Assembly of 2-Arylbenzothiazoles through Three-Component Oxidative Annulation under Transition-Metal-Free Conditions. Organic Letters, 2017, 19, 4576-4579.	2.4	95
24	Copper-Catalyzed Oxidative C(sp ³)â€"H Functionalization for Facile Synthesis of 1,2,4-Triazoles and 1,3,5-Triazines from Amidines. Organic Letters, 2015, 17, 2894-2897.	2.4	94
25	A Three-Component Approach to 3,5-Diaryl-1,2,4-thiadiazoles under Transition-Metal-Free Conditions. Organic Letters, 2016, 18, 2196-2199.	2.4	93
26	Metalâ€Free Visibleâ€Light Promoted Radical Cyclization to Access Perfluoroalkylâ€Substituted Benzimidazo[2,1â€ <i>a</i>]isoquinolinâ€6(5 <i>H</i>)â€ones and Indolo[2,1â€ <i>a</i>]isoquinolinâ€6(5 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2019, 361, 5176-5181	2.1 1.	87
27	Metal-Free Assembly of Polysubstituted Pyridines from Oximes and Acroleins. Journal of Organic Chemistry, 2016, 81, 1499-1505.	1.7	86
28	A Visibleâ€Lightâ€Promoted Metalâ€Free Strategy towards Arylphosphonates: Organicâ€Dyeâ€Catalyzed Phosphorylation of Arylhydrazines with Trialkylphosphites. Advanced Synthesis and Catalysis, 2018, 360, 4807-4813.	2.1	82
29	Unveiling the Advances of Nanostructure Design for Alloyâ€Type Potassiumâ€Ion Battery Anodes via Inâ€Situ TEM. Angewandte Chemie - International Edition, 2020, 59, 14504-14510.	7.2	82
30	Efficient 2-sulfolmethyl quinoline formation from 2-methylquinolines and sodium sulfinates under transition-metal free conditions. Chemical Communications, 2015, 51, 652-654.	2.2	75
31	Silver-Catalyzed Radical Cascade Cyclization toward 1,5-/1,3-Dicarbonyl Heterocycles: An Atom-/Step-Economical Strategy Leading to Chromenopyridines and Isoxazole-/Pyrazole-Containing Chroman-4-Ones. Organic Letters, 2018, 20, 6157-6160.	2.4	75
32	Thiophene-Fused Heteroaromatic Systems Enabled by Internal Oxidant-Induced Cascade Bis-Heteroannulation. Organic Letters, 2018, 20, 4917-4920.	2.4	75
33	Copper-Catalyzed Radical Cascade Cyclization To Access 3-Sulfonated Indenones with the AIE Phenomenon. Journal of Organic Chemistry, 2018, 83, 14419-14430.	1.7	74
34	Metal–organic frameworks derived hollow NiS ₂ spheres encased in graphene layers for enhanced sodium-ion storage. Journal of Materials Chemistry A, 2018, 6, 14077-14082.	5.2	74
35	Visible-light-mediated photoredox decarbonylative Minisci-type alkylation with aldehydes under ambient air conditions. Green Chemistry, 2019, 21, 5512-5516.	4.6	72
36	Nitriles as radical acceptors in radical cascade reactions. Organic Chemistry Frontiers, 2021, 8, 445-465.	2.3	71

#	Article	IF	Citations
37	Practical Synthesis of Polysubstituted Imidazoles <i>via</i> Iodine―Catalyzed Aerobic Oxidative Cyclization of Aryl Ketones and Benzylamines. Advanced Synthesis and Catalysis, 2013, 355, 170-180.	2.1	70
38	Silver-catalyzed decarboxylative cascade radical cyclization of <i>tert</i> -(allyloxy)arylaldehydes towards chroman-4-one derivatives. Organic Chemistry Frontiers, 2018, 5, 2925-2929.	2.3	70
39	Phosphorus Radical-Initiated Cascade Reaction To Access 2-Phosphoryl-Substituted Quinoxalines. Journal of Organic Chemistry, 2018, 83, 11727-11735.	1.7	69
40	One-Pot Cascade Synthesis of Substituted Carbazoles from Indoles, Ketones, and Alkenes Using Oxygen as the Oxidant. Journal of Organic Chemistry, 2017, 82, 2935-2942.	1.7	68
41	Efficient pyrido[1,2-a]benzimidazole formation from 2-aminopyridines and cyclohexanones under metal-free conditions. Green Chemistry, 2016, 18, 667-671.	4.6	67
42	Copperâ€Catalyzed Threeâ€Component Oneâ€Pot Synthesis of Aryl Sulfides with Sulfur Powder under Aqueous Conditions. Advanced Synthesis and Catalysis, 2016, 358, 3881-3886.	2.1	66
43	Recyclable Perovskite as Heterogeneous Photocatalyst for Aminomethylation of Imidazoâ€Fused Heterocycles. Advanced Synthesis and Catalysis, 2020, 362, 2143-2149.	2.1	65
44	A general electron donor–acceptor complex for photoactivation of arenes <i>via</i> thianthrenation. Chemical Science, 2022, 13, 5659-5666.	3.7	65
45	Ionic Liquid from Vitamin B1 Analogue and Heteropolyacid: A Recyclable Heterogeneous Catalyst for Dehydrative Coupling in Organic Carbonate. ACS Sustainable Chemistry and Engineering, 2019, 7, 3727-3732.	3.2	64
46	Copper-catalyzed one-pot three-component thioamination of 1,4-naphthoquinone. Organic Chemistry Frontiers, 2019, 6, 1476-1480.	2.3	64
47	Aerobic Oxidative Functionalization of Indoles. Advanced Synthesis and Catalysis, 2020, 362, 3795-3823.	2.1	64
48	Ethylene Glycol: A Green Solvent for Visible Lightâ€Promoted Aerobic Transition Metalâ€Free Cascade Sulfonation/Cyclization Reaction. Advanced Synthesis and Catalysis, 2020, 362, 2609-2614.	2.1	64
49	Visibleâ€Lightâ€Promoted Transitionâ€Metalâ€Free Approach toward Phosphorylâ€Substituted Dihydroisoquinolones via Cascade Phosphorylation/Cyclization of N â€Allylbenzamides. Advanced Synthesis and Catalysis, 2019, 361, 3712-3717.	2.1	61
50	Metal–organic framework derived yolk–shell NiS ₂ /carbon spheres for lithium–sulfur batteries with enhanced polysulfide redox kinetics. Chemical Communications, 2019, 55, 3243-3246.	2.2	61
51	Solvent-controlled highly regio-selective thieno[2,3- <i>b</i> jindole formation under metal-free conditions. Green Chemistry, 2017, 19, 5553-5558.	4.6	60
52	Metal-free sulfonyl radical-initiated cascade cyclization to access sulfonated indolo[1,2- <i>a</i>]quinolines. Chemical Communications, 2019, 55, 12615-12618.	2.2	59
53	Transition-Metal-Free N–O Reduction of Oximes: A Modular Synthesis of Fluorinated Pyridines. Organic Letters, 2017, 19, 3743-3746.	2.4	58
54	6Ï€-Electrocyclization in water: microwave-assisted synthesis of polyheterocyclic-fused quinoline-2-thiones. Green Chemistry, 2020, 22, 4445-4449.	4.6	58

#	Article	IF	CITATIONS
55	Recyclable Cu@C ₃ N ₄ -Catalyzed Hydroxylation of Aryl Boronic Acids in Water under Visible Light: Synthesis of Phenols under Ambient Conditions and Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 2682-2687.	3.2	57
56	Copper-Catalyzed C4-H Regioselective Phosphorylation/Trifluoromethylation of Free 1-Naphthylamines. Organic Letters, 2019, 21, 486-489.	2.4	56
57	Mn(III)â€Mediated Regioselective 6â€∢i>endoàê€trig Radical Cyclization of <i>o</i> àê€Vinylaryl Isocyanides to Access 2â€Functionalized Quinolines. Advanced Synthesis and Catalysis, 2020, 362, 688-694.	2.1	55
58	Metal-free oxidative cyclization of 2-aminobenzothiazoles and cyclic ketones enabled by the combination of elemental sulfur and oxygen. Green Chemistry, 2017, 19, 4294-4298.	4.6	54
59	Visibleâ€Lightâ€Induced Metalâ€Free Synthesis of 2â€Phosphorylated Thioflavones in Water. ChemSusChem, 2020, 13, 298-303.	3.6	54
60	Palladiumâ€Catalyzed CC Coupling of Aryl Halides with Isocyanides: An Alternative Method for the Stereoselective Synthesis of (3 <i>E</i>)â€(Imino)isoindolinâ€1â€ones and (3 <i>E</i>)â€(Imino)thiaisoindoline 1,1â€Dioxides. Advanced Synthesis and Catalysis, 2012, 354, 2288-2300.	2.1	53
61	Synthesis of 2,4-diarylsubstituted-pyridines through a Ru-catalyzed four component reaction. Organic and Biomolecular Chemistry, 2015, 13, 4404-4407.	1.5	53
62	Palladium-Catalyzed Sequential C–N/C–O Bond Formations: Synthesis of Oxazole Derivatives from Amides and Ketones. Organic Letters, 2014, 16, 5906-5909.	2.4	52
63	Arylaminomethyl Radical-Initiated Cascade Annulation Reaction of Quinoxalin-2(1 <i>H</i>)-ones Catalyzed by Recyclable Photocatalyst Perovskite. Organic Letters, 2020, 22, 6960-6965.	2.4	52
64	Three-Component Cascade Bis-heteroannulation of Aryl or Vinyl Methylketoxime Acetates toward Thieno[3,2- <i>c</i>) isoquinolines. Organic Letters, 2019, 21, 8630-8634.	2.4	51
65	Hydroarylation of Activated Alkenes Enabled by Proton-Coupled Electron Transfer. ACS Catalysis, 2021, 11, 4422-4429.	5.5	51
66	Threeâ€Component Thieno[2,3â€ <i>b</i>]indole Synthesis from Indoles, Alkenes or Alkynes and Sulfur Powder under Metalâ€Free Conditions. Advanced Synthesis and Catalysis, 2017, 359, 4300-4304.	2.1	50
67	Ce(<scp>iii</scp>)-Containing tungstotellurate(<scp>vi</scp>) with a sandwich structure: an efficient Lewis acid–base catalyst for the condensation cyclization of 1,3-diketones with hydrazines/hydrazides or diamines. Inorganic Chemistry Frontiers, 2018, 5, 2472-2477.	3.0	50
68	LiBrâ€Promoted Photoredox Minisciâ€Type Alkylations of Quinolines with Ethers. Advanced Synthesis and Catalysis, 2019, 361, 5643-5647.	2.1	50
69	Visible-light-induced metal-free cascade cyclization of $\langle i \rangle N \langle i \rangle$ -arylpropiolamides to 3-phosphorylated, trifluoromethylated and thiocyanated azaspiro [4.5] trienones. Organic Chemistry Frontiers, 2021, 8, 760-766.	2.3	50
70	Metal-Free Photosynthesis of Alkylated Benzimidazo $[2,1-\langle i\rangle a\langle i\rangle]$ is oquinoline-6(5 $\langle i\rangle H\langle i\rangle$)-ones and Indolo $[2,1-\langle i\rangle a\langle i\rangle]$ is oquinolin-6(5 $\langle i\rangle H\langle i\rangle$)-ones in PEG-200. Journal of Organic Chemistry, 2021, 86, 9055-9066.	1.7	50
71	Manganese(II/III/I)-Catalyzed C–H Arylations in Continuous Flow. ACS Catalysis, 2018, 8, 4402-4407.	5.5	49
72	Recent Advances in Organocatalystâ€Mediated Benzannulation Reactions. Advanced Synthesis and Catalysis, 2020, 362, 4010-4026.	2.1	49

#	Article	IF	CITATIONS
73	Selectivity Control in Ruthenium(II)-Catalyzed C–H/N–O Activation with Alkynyl Bromides. Organic Letters, 2017, 19, 4620-4623.	2.4	47
74	Oneâ€Pot Synthesis of 2,3,5â€Trisubstituted Thiophenes through Threeâ€Component Assembly of Arylacetaldehydes, Elemental Sulfur, and 1,3â€Dicarbonyls. Advanced Synthesis and Catalysis, 2018, 360, 796-800.	2.1	47
7 5	Catalyst- and additive-free annulation/aromatization leading to benzothiazoles and naphthothiazoles. Organic Chemistry Frontiers, 2019, 6, 3060-3064.	2.3	47
76	Applications of <i>H</i> -phosphonates for C element bond formation. Pure and Applied Chemistry, 2019, 91, 33-41.	0.9	47
77	Unveiling the Advances of Nanostructure Design for Alloyâ€Type Potassiumâ€ion Battery Anodes via Inâ€Situ TEM. Angewandte Chemie, 2020, 132, 14612-14618.	1.6	47
78	Photoinduced Decatungstate-Catalyzed C-H Functionalization. Chinese Journal of Organic Chemistry, 2020, 40, 3620.	0.6	47
79	Modular Synthesis of Carbazole-Based Conjugated Molecules through a One-Pot Annulation/Dehydrogenation Sequence. Journal of Organic Chemistry, 2017, 82, 11182-11191.	1.7	46
80	Four-component thiazole formation from simple chemicals under metal-free conditions. Green Chemistry, 2019, 21, 986-990.	4.6	46
81	Three-component bis-heterocycliation for synthesis of 2-aminobenzo[4,5]thieno[3,2- <i>d</i>)thiazoles. Organic Chemistry Frontiers, 2019, 6, 1146-1150.	2.3	46
82	Radical Reactions for the Synthesis of 3â€Substituted Chromanâ€4â€ones. European Journal of Organic Chemistry, 2020, 2020, 1588-1597.	1.2	45
83	Triâ€Functional Elemental Sulfur Enabling Bisâ€Heteroannulation of Methyl Ketoximes with Methyl <i>N</i> â€Heteroarenes. Advanced Synthesis and Catalysis, 2019, 361, 591-596.	2.1	43
84	Polymerization-Enhanced Photocatalysis for the Functionalization of C(sp ³)–H Bonds. ACS Catalysis, 2022, 12, 126-134.	5.5	43
85	Recent Advances in Sulfur-Containing Heterocycle Formation via Direct C–H Sulfuration with Elemental Sulfur. Synlett, 2021, 32, 142-158.	1.0	42
86	Elemental Sulfurâ€Promoted Aerobic Cyclization of Ketones and Aliphatic Amines for Synthesis of Tetrasubstituted Imidazoles. Advanced Synthesis and Catalysis, 2018, 360, 4017-4022.	2.1	41
87	Synthesis of <i>o</i> -Arylenediamines through Elemental Sulfur-Promoted Aerobic Dehydrogenative Aromatization of Cyclohexanones with Arylamines. Organic Letters, 2018, 20, 5470-5473.	2.4	41
88	Copper-Catalyzed Three-Component Domino Cyclization for the Synthesis of 4-Aryl-5-(arythio)-2-(trifluoromethyl)oxazoles. Organic Letters, 2019, 21, 8533-8536.	2.4	40
89	A Three-Component Strategy for Benzoselenophene Synthesis under Metal-Free Conditions Using Selenium Powder. Organic Letters, 2019, 21, 3518-3522.	2.4	40
90	LiBr-promoted photoredox neutral Minisci hydroxyalkylations of quinolines with aldehydes. Green Chemistry, 2020, 22, 8233-8237.	4.6	40

#	Article	IF	CITATIONS
91	A metal-free visible-light-promoted phosphorylation/cyclization reaction in water towards 3-phosphorylated benzothiophenes. Organic Chemistry Frontiers, 2020, 7, 1884-1889.	2.3	40
92	Nal/PPh ₃ -Mediated Photochemical Reduction and Amination of Nitroarenes. Organic Letters, 2021, 23, 5349-5353.	2.4	40
93	Perovskite as Recyclable Photocatalyst for Annulation Reaction of $\langle i \rangle N \langle j \rangle$ -Sulfonyl Ketimines. Organic Letters, 2022, 24, 299-303.	2.4	40
94	An External-Catalyst-Free Trifluoromethylation/Cyclization Strategy To Access Trifluoromethylated-Dihydroisoquinolinones/Indolines with Togni Reagent II. Organic Letters, 2019, 21, 1863-1867.	2.4	38
95	Functionalization of imidazo[1,2- <i>a</i>]pyridines <i>via</i> radical reactions. New Journal of Chemistry, 2021, 45, 9302-9314.	1.4	38
96	Synthesis of polysubstituted pyridines from oxime acetates using NH ₄ I as a dual-function promoter. Organic and Biomolecular Chemistry, 2018, 16, 124-129.	1.5	37
97	A Four-Component Reaction for the Synthesis of \hat{l}^2 -Quinoline Allylic Sulfones under Iron Catalysis. Journal of Organic Chemistry, 2018, 83, 10420-10429.	1.7	37
98	Chemoselective metal-free indole arylation with cyclohexanones. Organic Chemistry Frontiers, 2019, 6, 2738-2743.	2.3	37
99	Visible-light-induced direct 3-ethoxycarbonylmethylation of 2-aryl-2 <i>H</i> ionumerical of the control of the c	2.3	37
100	Baseâ€Promoted [3+2]â€Annulation of Oxime Esters and Aldehydes for Rapid Isoxazoline Formation. Advanced Synthesis and Catalysis, 2017, 359, 3102-3107.	2.1	36
101	Copper-catalyzed aerobic oxygenative cross dehydrogenative coupling of methyl ketones with para-C–H of primary anilines. Green Chemistry, 2017, 19, 619-622.	4.6	36
102	Silverâ€Catalyzed Radical Cascade Cyclization of Unactivated Alkenes towards Cyclopenta[c]quinolines. Advanced Synthesis and Catalysis, 2019, 361, 4483-4488.	2.1	36
103	Regioselectivity Control in the Oxidative Formal [3 + 2] Annulations of Ketoxime Acetates and Tetrohydroisoquinolines. Organic Letters, 2019, 21, 8239-8243.	2.4	36
104	Visible-light-promoted catalyst-/additive-free synthesis of aroylated heterocycles in a sustainable solvent. Green Chemistry, 2022, 24, 1732-1737.	4.6	36
105	MnCl ₂ -Catalyzed C–H Alkylation on Azine Heterocycles. Organic Letters, 2019, 21, 571-574.	2.4	35
106	Copper(0)/PPh ₃ -Mediated Bisheteroannulations of <i>o</i> -Nitroalkynes with Methylketoximes Accessing Pyrazo-Fused Pseudoindoxyls. Organic Letters, 2020, 22, 6117-6121.	2.4	35
107	Visible-light-driven Cadogan reaction. Chinese Chemical Letters, 2021, 32, 2582-2586.	4.8	35
108	Cul/SnCl ₂ Co atalyzed Four omponent Reaction of Ketones, Amines, Alkynes, and Carbon Dioxide. European Journal of Organic Chemistry, 2012, 2012, 5665-5667.	1.2	33

#	Article	IF	CITATIONS
109	Palladium-Catalyzed Phthalazinone Synthesis Using Paraformaldehyde as Carbon Source. Organic Letters, 2014, 16, 5324-5327.	2.4	33
110	A cascade approach to fused indolizinones through Lewis acid–copper(i) relay catalysis. Chemical Communications, 2013, 49, 3351.	2.2	32
111	Phosphomolybdic acid as a bifunctional catalyst for Friedel–Crafts type dehydrative coupling reaction. Applied Organometallic Chemistry, 2018, 32, e4450.	1.7	31
112	Photocatalytic transition-metal-free direct 3-alkylation of 2-aryl-2 <i>H</i> -indazoles in dimethyl carbonate. Organic Chemistry Frontiers, 2021, 8, 3286-3291.	2.3	31
113	Chiral Imidazoline Ligands and Their Applications in <scp>Metalâ€Catalyzed</scp> Asymmetric Synthesis ^{â€} . Chinese Journal of Chemistry, 2021, 39, 488-514.	2.6	31
114	Photoredox Cyclization of <i>N</i> -Arylacrylamides for Synthesis of Dihydroquinolinones. Organic Letters, 2022, 24, 349-353.	2.4	31
115	Metal-free synthesis of indolo[2,3-b]indoles through aerobic cascade dehydrogenative aromatization/oxidative annulation. Green Synthesis and Catalysis, 2021, 2, 78-81.	3.7	30
116	Radical Cascade Reactions of β,γâ€Unsaturated Hydrazones/Oximes. Advanced Synthesis and Catalysis, 2021, 363, 4640-4666.	2.1	30
117	Concise synthesis of ketoallyl sulfones through an iron-catalyzed sequential four-component assembly. Green Chemistry, 2018, 20, 973-977.	4.6	29
118	Metal- and base-free synthesis of imidazo[1,2- <i>a</i>]pyridines through elemental sulfur-initiated oxidative annulation of 2-aminopyridines and aldehydes. Organic and Biomolecular Chemistry, 2018, 16, 4227-4230.	1.5	29
119	Visible-Light-Induced Phosphorylation of Imidazo-Fused Heterocycles under Metal-Free Conditions. Journal of Organic Chemistry, 2020, 85, 14744-14752.	1.7	29
120	Visible Lightâ€Induced Aerobic Oxidation of Indoles: Oneâ€Pot Formation of 4â€Quinolones at Room Temperature. Asian Journal of Organic Chemistry, 2018, 7, 711-714.	1.3	27
121	Metal-Free Double Csp ² â€"H Bond Functionalization: Strategy for Synthesizing Benzo[<i>a</i>)carbazoles from 2-Arylindoles and Acetophenones/Alkynes. Organic Letters, 2019, 21, 3687-3691.	2.4	27
122	Realizing Fast Diffusion Kinetics Based on Three-Dimensional Ordered Macroporous Cu ₉ S ₅ @C for Potassium-Ion Batteries. ACS Applied Materials & Literaces, 2021, 13, 36982-36991.	4.0	27
123	Copper-Catalyzed Formal [3 + 3] Annulations of Arylketoximes and <i>o</i> -Fluorobenzaldehydes: An Entry to Quinoline Compounds. Organic Letters, 2021, 23, 936-942.	2.4	27
124	Palladium-Catalyzed Oxidative C–N Bond Coupling Involving a Solvent-Controlled Regioselective Bromination Process. Journal of Organic Chemistry, 2014, 79, 7005-7011.	1.7	26
125	Recyclable Carbon Nitride <scp>Nanosheetâ€Photocatalyzed</scp> Aminomethylation of Imidazo[1,2â€ <i>a</i>]pyridines in Green Solvent. Chinese Journal of Chemistry, 2022, 40, 97-103.	2.6	26
126	Palladium-catalyzed N-arylsulfonamide formation from arylsulfonyl hydrazides and nitroarenes. RSC Advances, 2016, 6, 13010-13013.	1.7	25

#	Article	IF	CITATIONS
127	1-Acryloyl-2-cyanoindole: A Skeleton for Visible-Light-Induced Cascade Annulation. Organic Letters, 2022, 24, 3014-3018.	2.4	25
128	Visible light-mediated radical-cascade addition/cyclization of arylacrylamides with aldehydes to form quaternary oxindoles at room temperature. Organic Chemistry Frontiers, 2022, 9, 3506-3514.	2.3	25
129	Palladiumâ€Catalyzed 3â€Arylâ€5â€acylâ€1,2,4â€thiadiazole Formation from Ketones, Amidines, and Sulfur Pow European Journal of Organic Chemistry, 2017, 2017, 1604-1607.	vder 1.2	24
130	Visible-light-promoted organic dye-catalyzed sulfidation and phosphorylation of arylhydrazines toward aromatic sulfides and diarylphosphoryl hydrazides. New Journal of Chemistry, 2019, 43, 13642-13646.	1.4	24
131	The cyclopropylimine rearrangement/Povarov reaction cascade for the assembly of pyrrolo[3,2-c]quinoline derivatives. Green Chemistry, 2016, 18, 3503-3506.	4.6	23
132	Aerobic cross-dehydrogenative couplings of N-heteroarenes with toluene derivatives at room temperature. Green Chemistry, 2021, 23, 7790-7795.	4.6	22
133	Piperidine Promoted Direct Sulfenylation of 2â€Naphthol with Aryl Thiols under Aqueous Conditions. ChemistrySelect, 2017, 2, 428-431.	0.7	21
134	Three-Component Cascade Synthesis of Carbazoles through [1s,6s] Sigmatropic Shift under Metal-Free Conditions. Journal of Organic Chemistry, 2019, 84, 3121-3131.	1.7	21
135	Application of <i>α</i> -Keto Acids in Metal-Free Photocatalysis. Chinese Journal of Organic Chemistry, 2021, 41, 4575.	0.6	21
136	Palladiumâ€Catalyzed Oxidative Direct <i>ortho</i> â€Câ€"H Acylation of Arenes with Aldehydes under Aqueous Conditions. European Journal of Organic Chemistry, 2015, 2015, 7919-7925.	1.2	20
137	Silver-mediated radical phosphorylation/cyclization of <i>N</i> -allylbenzamides to access phosphoryl-substituted dihydroisoquinolones. New Journal of Chemistry, 2019, 43, 12221-12224.	1.4	20
138	Recent advances in the transition metal-free oxidative dehydrogenative aromatization of cyclohexanones. Organic and Biomolecular Chemistry, 2021, 19, 6380-6391.	1.5	20
139	Deoxygenative C–S Bond Coupling with Sulfinates via Nickel/Photoredox Dual Catalysis. Organic Letters, 2022, 24, 1865-1870.	2.4	20
140	Copper-catalyzed oxidative cyclization of arylamides and \hat{l}^2 -diketones: new synthesis of 2,4,5-trisubstituted oxazoles. RSC Advances, 2015, 5, 8002-8005.	1.7	19
141	Three-component 2-aryl substituted benzothiophene formation under transition-metal free conditions. RSC Advances, 2016, 6, 41751-41754.	1.7	19
142	Palladium-Catalyzed Aerobic Benzannulation of Amines, Benzaldehydes, and \hat{l}^2 -Dicarbonyls. Organic Letters, 2019, 21, 7489-7492.	2.4	19
143	Switchable aroylation and diaroylation of allyl sulfones with aldehydes enabled by decatungstate photocatalysis. Green Chemistry, 2022, 24, 5614-5619.	4.6	18
144	Metalâ€Free Threeâ€Component Selenopheno[2,3â€ <i>b</i>) Jindole Formation through Double Câ^'H Selenylation with Selenium Powder. Advanced Synthesis and Catalysis, 2019, 361, 5351-5356.	2.1	17

#	Article	IF	Citations
145	Transition-metal-free sulfonylations of methylthiolated alkynones to synthesize 3-sulfonylated thioflavones. New Journal of Chemistry, 2020, 44, 14786-14790.	1.4	17
146	Visible lightâ€promoted recyclable carbon nitrideâ€catalyzed dioxygenation of β,γâ€unsaturated oximes. Advanced Synthesis and Catalysis, 0, , .	2.1	17
147	Ce(III)/Photoassisted Synthesis of Amides from Carboxylic Acids and Isocyanates. Organic Letters, 2022, 24, 2431-2435.	2.4	17
148	Photocatalytic aerobic \hat{l} ±-thiolation/annulation of carbonyls with mercaptobenzimidazoles. Organic and Biomolecular Chemistry, 2019, 17, 4979-4983.	1.5	16
149	A Type of Atypical AIEgen Used for One-Photon/Two-Photon Targeted Imaging in Live Cells. ACS Applied Bio Materials, 2020, 3, 505-511.	2.3	16
150	Elemental Sulfur-Promoted Aerobic Dehydrogenative Aromatization of Cyclohexanones with Amines. Journal of Organic Chemistry, 2020, 85, 9415-9423.	1.7	16
151	Visible-light-induced aerobic oxidative desulfurization of 2-mercaptobenzimidazoles <i>via</i> sulfinyl radical. Green Chemistry, 2020, 22, 5594-5598.	4.6	16
152	Base-Promoted Three-Component One-Pot Synthesis of 3- (Thiomethyl)indoles with Paraformaldehyde under Aqueous Conditions. Synlett, 2018, 29, 2693-2696.	1.0	15
153	Visible-light-promoted decarboxylative radical cascade cyclization to acylated benzimidazo/indolo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones in water. RSC Advances, 2022, 12, 19736-19740.	1.7	15
154	Three-component synthesis of 1,4-benzothiazines via iodide-catalyzed aerobic C–H sulfuration with elemental sulfur. Organic and Biomolecular Chemistry, 2020, 18, 3234-3238.	1.5	14
155	<scp>Copperâ€Catalyzed</scp> Aerobic Oxidative Ring Expansion of Isatins: A Facile Entry to <scp>Isoquinolinoâ€Fused</scp> Quinazolinones. Chinese Journal of Chemistry, 2021, 39, 87-92.	2.6	14
156	<scp>Cuâ€Catalyzed /scp> Cascade Cyclization of Ketoxime Acetates and Alkynals Enabling Synthesis of Acylpyrroles. Chinese Journal of Chemistry, 2021, 39, 1175-1180.</scp>	2.6	14
157	BrÃ,nsted acid-promoted thiazole synthesis under metal-free conditions using sulfur powder as the sulfur source. RSC Advances, 2020, 10, 3931-3935.	1.7	14
158	Decatungstate-photocatalyzed direct coupling of inert alkanes and quinoxalin- $2(1H)$ -ones with H ₂ evolution. Organic Chemistry Frontiers, 2022, 9, 2728-2733.	2.3	14
159	Aerobic C–C Bond Cleavage of Indoles by Visible‣ight Photoredox Catalysis with Ru(bpy) ₃ ²⁺ . European Journal of Organic Chemistry, 2017, 2017, 6652-6659.	1.2	13
160	Regioselective three-component synthesis of 1,2-diarylindoles from cyclohexanones, \hat{l}_{\pm} -hydroxyketones and anilines under transition-metal-free conditions. Chemical Communications, 2019, 55, 4079-4082.	2.2	13
161	Divergent g-C3N4-catalyzed Reactions of Quinoxalin-2(1H)-ones with N-Aryl Glycines under Visible Light: Solvent-Controlled Hydroaminomethylation and Annulation. ACS Sustainable Chemistry and Engineering, 2020, , .	3.2	13
162	Visible-light-induced 4CzIPN/LiBr system: a tireless electron shuttle to enable reductive deoxygenation of N-heteroaryl carbonyls. Organic Chemistry Frontiers, 2021, 8, 4419-4425.	2.3	13

#	Article	IF	CITATIONS
163	Stoichiometric couplings of methylarenes through visible-light-induced bromo radical formation from aryl halides. Green Chemistry, 2022, 24, 3293-3299.	4.6	13
164	Copper(<scp>i</scp>)/Lewis acid triggered ring-opening coupling reaction of cyclopropenes with nitriles. RSC Advances, 2015, 5, 26335-26338.	1.7	12
165	Metal-Free Synthesis and Photophysical Properties of 1,2,4-Triarylpyrroles. Journal of Organic Chemistry, 2021, 86, 110-127.	1.7	12
166	Visibleâ€Lightâ€Induced Photoredox 1,1â€Dichloromethylation of Alkenes with Chloroform. Advanced Synthesis and Catalysis, 2022, 364, 1573-1579.	2.1	12
167	Diverse catalytic systems for nitrogen-heterocycle formation from O-acyl ketoximes. Chinese Chemical Letters, 2023, 34, 107565.	4.8	12
168	Mild and ambient annulations for pyrrole synthesis from amines and arylacetaldehydes. RSC Advances, 2016, 6, 7011-7014.	1.7	11
169	Plasmonic Cu NPs-embedded phenothiazine benzene with tunable bonding units for superior photocatalytic CO2 reduction. Applied Surface Science, 2021, 550, 149361.	3.1	11
170	Bromo Radicalâ€Mediated Photoredox Aldehyde Decarbonylation towards Transitionâ€Metalâ€Free Hydroalkylation of Acrylamides at Room Temperature. Advanced Synthesis and Catalysis, 2022, 364, 453-458.	2.1	11
171	Visible-light-induced cyclization of cyclic <i>N</i> -sulfonyl ketimines to <i>N</i> -sulfonamide fused imidazolidines. Organic and Biomolecular Chemistry, 2022, 20, 3798-3802.	1.5	10
172	lodine-promoted stereoselective amidosulfenylation of electron-deficient alkynes. RSC Advances, 2018, 8, 23319-23322.	1.7	9
173	Anthraquinone-Based Covalent Organic Framework Nanosheets with Ordered Porous Structures for Highly Reversible Sodium Storage. Energy & Samp; Fuels, 2021, 35, 1851-1858.	2.5	9
174	Redox-neutral decarboxylative photocyclization of anthranilic acids. Green Chemistry, 2020, 22, 8243-8247.	4.6	8
175	Aerobic C(sp ³)–H oxidation and oxygenation of quaternarized quinolines and pyridines by visible-light-induced photocatalysis. Organic Chemistry Frontiers, 2020, 7, 1671-1678.	2.3	8
176	Visible-light- and bromide-mediated photoredox Minisci alkylation of N-heteroarenes with ester acetates. Organic and Biomolecular Chemistry, 2021, 19, 9177-9181.	1.5	8
177	Oxidative \hat{l} ±-acyloxylation of acetals with cyclic diacyl peroxides. Organic Chemistry Frontiers, 2021, 8, 3091-3101.	2.3	7
178	A Polyniobotungstate-Based Hybrid for Visible-Light-Induced Phosphorylation of <i>N</i> -Aryl-Tetrahydroisoquinoline. ACS Applied Materials & Interfaces, 2022, 14, 19278-19284.	4.0	7
179	Concise synthesis of <i>N</i> -thiomethyl benzoimidazoles through base-promoted sequential multicomponent assembly. RSC Advances, 2019, 9, 30570-30574.	1.7	6
180	Selective Formation of 2â€(2â€Aminophenyl)benzothiazoles via Copperâ€Catalyzed Aerobic Câ^'C Bond Cleavage of Isatins. Advanced Synthesis and Catalysis, 2020, 362, 1663-1668.	2.1	6

#	Article	IF	Citations
181	Base-controlled divergent synthesis of vinyl sulfones from (benzylsulfonyl)benzenes and paraformaldehyde. Organic and Biomolecular Chemistry, 2020, 18, 3527-3535.	1.5	6
182	Visible Light-Induced Aerobic Oxidative Dehydrogenative Coupling of Thiophenols. Chinese Journal of Organic Chemistry, 2021, 41, 4704.	0.6	6
183	Copper-catalyzed three-component <i>N</i> -alkylation of quinazolinones and azoles. Organic and Biomolecular Chemistry, 2022, 20, 1200-1204.	1.5	6
184	Photoredox Neutral Decarboxylative Hydroxyalkylations of Heteroarenes with \hat{l}_{\pm} -Keto Acids. Journal of Organic Chemistry, 2022, 87, 4168-4182.	1.7	6
185	Selective Synthesis of Diverse Heterocycles via Metalâ€Free Oxidative Coupling of <i>beta</i> â€Tetralone and Nitrogen Nucleophiles. Advanced Synthesis and Catalysis, 2022, 364, 1481-1487.	2.1	6
186	On Topological Analysis of Graphite Carbon Nitride via Degree Based Coindices. Polycyclic Aromatic Compounds, 2022, 42, 2777-2788.	1.4	5
187	Copper-catalyzed three-component formal $[3+1+2]$ annulations for the synthesis of 2-aminopyrimidines from $\langle i \rangle O \langle i \rangle$ -acyl ketoximes. Organic and Biomolecular Chemistry, 2021, 19, 8706-8710.	1.5	5
188	NH ₄ I-promoted oxidative formation of benzothiazoles and thiazoles from arylacetic acids and phenylalanines with elemental sulfur. Organic and Biomolecular Chemistry, 2021, 19, 5108-5113.	1.5	5
189	Rhodium(<scp>iii</scp>)-catalyzed successive C(sp ²)â€"H and C(sp ²)â€"C(sp ²) bond activation of aryl oximes: synthetic and mechanistic studies. Organic Chemistry Frontiers, 2022, 9, 822-830.	2.3	5
190	Site-Selective Synthesis of Aryl Sulfides <i>via</i> Oxidative Aromatization of Cyclohexanones with Thiophenols. Journal of Organic Chemistry, 2022, 87, 512-523.	1.7	5
191	Synthesis of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Ketosulfone from Sodium Sulfinate and Aryl Ethyl Ketone/Indanone. Chinese Journal of Organic Chemistry, 2021, 41, 4749.	0.6	4
192	Metal-/catalyst-free one-pot three-component thioamination of $1,4$ -naphthoquinone in a sustainable solvent. New Journal of Chemistry, 2022, 46, 4550-4554.	1.4	3
193	MXene Nanoflakes Confined in Multichannel Carbon Nanofibers as Electrocatalysts for Lithium–Sulfur Batteries. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	1
194	Recent Advances of Calcium Carbide in Organic Reactions. Current Chinese Chemistry, 2021, 1, 3-10.	0.3	1
195	CuCl-photocatalyzed C–H amination of benzoxazoles. Organic and Biomolecular Chemistry, 2022, 20, 5125-5128.	1.5	1
196	Innenrücktitelbild: Unveiling the Advances of Nanostructure Design for Alloyâ€Type Potassiumâ€lon Battery Anodes via Inâ€Situ TEM (Angew. Chem. 34/2020). Angewandte Chemie, 2020, 132, 14801-14801.	1.6	0