
C De Miguel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9947426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endothelial NOX5 Expression Modulates Thermogenesis and Lipolysis in Mice Fed with a High-Fat Diet and 3T3-L1 Adipocytes through an Interleukin-6 Dependent Mechanism. Antioxidants, 2022, 11, 30.	2.2	7
2	Endothelial Nox5 Expression Modulates Glucose Uptake and Lipid Accumulation in Mice Fed a High-Fat Diet and 3T3-L1 Adipocytes Treated with Glucose and Palmitic Acid. International Journal of Molecular Sciences, 2021, 22, 2729.	1.8	10
3	NADPH Oxidase 5 Induces Changes in the Unfolded Protein Response in Human Aortic Endothelial Cells and in Endothelial-Specific Knock-in Mice. Antioxidants, 2021, 10, 194.	2.2	7
4	Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells. Cells, 2020, 9, 637.	1.8	16
5	Effect of hypoxia on caveolae-related protein expression and insulin signaling in adipocytes. Molecular and Cellular Endocrinology, 2018, 473, 257-267.	1.6	33
6	Effects of high glucose on caveolin-1 and insulin signaling in 3T3-L1 adipocytes. Adipocyte, 2016, 5, 65-80.	1.3	21
7	Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling During Adipocyte Differentiation and in Mature Adipocytes. Cellular Physiology and Biochemistry, 2015, 36, 1499-1516.	1.1	35
8	Expression of Caveolin 1 Is Enhanced by DNA Demethylation during Adipocyte Differentiation. Status of Insulin Signaling. PLoS ONE, 2014, 9, e95100.	1.1	23
9	Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Molecular Aspects of Medicine, 2013, 34, 782-812.	2.7	242
10	High-fat diet feeding alters metabolic response to fasting/non fasting conditions. Effect on caveolin expression and insulin signalling. Lipids in Health and Disease, 2011, 10, 55.	1.2	10
11	Caveolin expression and activation in retroperitoneal and subcutaneous adipocytes: Influence of a highâ€fat diet. Journal of Cellular Physiology, 2010, 225, 206-213.	2.0	18
12	Timeâ€dependent regulation of muscle caveolin activation and insulin signalling in response to highâ€fat diet. FEBS Letters, 2009, 583, 3259-3264.	1.3	13
13	Transcriptional regulation of the human type 8 17β-hydroxysteroid dehydrogenase gene by C/EBPβ. Journal of Steroid Biochemistry and Molecular Biology, 2007, 105, 131-139.	1.2	19
14	All-trans-retinoic acid inhibits collapsin response mediator protein-2 transcriptional activity during SH-SY5Y neuroblastoma cell differentiation. FEBS Journal, 2007, 274, 498-511.	2.2	8
15	High-fat feeding period affects gene expression in rat white adipose tissue. Molecular and Cellular Biochemistry, 2005, 275, 109-115.	1.4	32
16	Gene expression changes in rat white adipose tissue after a high-fat diet determined by differential display. Biochemical and Biophysical Research Communications, 2004, 318, 234-239.	1.0	46
17	Promoter analysis of the human p44 mitogen-activated protein kinase gene (MAPK3): transcriptional repression under nonproliferating conditions. Genomics, 2004, 84, 222-226.	1.3	12
18	DNA Microarray Analysis of Genes Differentially Expressed in Dietâ€Induced (Cafeteria) Obese Rats. Obesity, 2003, 11, 188-194.	4.0	136

C DE MIGUEL

#	Article	IF	CITATIONS
19	Methodological approaches to assess body-weight regulation and aetiology of obesity. Proceedings of the Nutrition Society, 2000, 59, 405-411.	0.4	11
20	Differential Gene Expression in the Activation and Maturation of Human Monocytes. Archives of Biochemistry and Biophysics, 2000, 374, 153-160.	1.4	13
21	Co-expression of inducible nitric oxide synthase and arginases in different human monocyte subsets. Apoptosis regulated by endogenous NO. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1451, 319-333.	1.9	37
22	Molecular Cloning and Characterization of the Human p44 Mitogen-Activated Protein Kinase Gene. Genomics, 1998, 50, 69-78.	1.3	14
23	Correlation of activated monocytes or B cells with T lymphocyte subsets in patients with Graves' disease International Journal of Molecular Medicine, 1998, 1, 95.	1.8	1
24	Correlation of activated monocytes or B cells with T lymphocyte subsets in patients with Graves' disease. International Journal of Molecular Medicine, 1998, 1, 95-103.	1.8	6
25	Apolipoprotein E forms stable complexes with recombinant Alzheimer's disease β-amyloid precursor protein. Biochemical Journal, 1997, 325, 169-175.	1.7	27
26	Selection of down-regulated sequences along the monocytic differentiation of leukemic HL60 cells. FEBS Letters, 1997, 414, 146-152.	1.3	13
27	Proteolysis of Alzheimer's disease β-amyloid precursor protein by factor Xa. BBA - Proteins and Proteomics, 1997, 1343, 85-94.	2.1	9
28	lsolation of a cDNA encoding the rat MAP-kinase homolog of human p63mapk. Mammalian Genome, 1996, 7, 810-814.	1.0	10
29	Hypoxia-Selective Agents Derived from Quinoxaline 1,4-Di-N-oxides. Journal of Medicinal Chemistry, 1995, 38, 1786-1792.	2.9	127
30	Molecular Analysis of Microtubule-Associated Protein-2 Kinase cDNA from Mouse and Rat Brain. DNA and Cell Biology, 1991, 10, 505-514.	0.9	10
31	Exclusion of linkage to 5qll–13 in families with schizophrenia and other psychiatric disorders. Nature, 1989, 340, 391-393.	13.7	101
32	Interaction of f1-atpase and its inhibitor peptide effect of pH. International Journal of Biochemistry & Cell Biology, 1988, 20, 977-981.	0.8	5
33	Interaction of f1-atpase and its inhibitor peptide effect of dinitrophenol, nucleotides and anions. International Journal of Biochemistry & Cell Biology, 1988, 20, 983-987.	0.8	0
34	RFLPs associated with the substance P-neurokinin A gene (NKNA). Nucleic Acids Research, 1988, 16, 1644-1644.	6.5	1
35	Neuropeptide gene polymorphisms in affective disorder and schizophrenia. Journal of Psychiatric Research, 1987, 21, 581-587.	1.5	26
36	Interaction of vasoactive intestinal peptide with Hela cells: Activation of cyclic AMP-dependent protein kinase and lack of effect on DNA synthesis. Biochemical and Biophysical Research Communications, 1981, 103, 799-805.	1.0	8