## Hiroyuki Arai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9946159/publications.pdf Version: 2024-02-01



ΗΙΡΟΥΠΚΙ ΔΡΛΙ

| #  | Article                                                                                                                                                                                                                                       | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | PI4P/PS countertransport by ORP10 at ER–endosome membrane contact sites regulates endosome<br>fission. Journal of Cell Biology, 2022, 221, .                                                                                                  | 2.3 | 33        |
| 2  | Supercritical fluid chromatography-mass spectrometry enables simultaneous measurement of all phosphoinositide regioisomers. Communications Chemistry, 2022, 5, .                                                                              | 2.0 | 3         |
| 3  | Omega-3 fatty acid epoxides produced by PAF-AH2 in mast cells regulate pulmonary vascular remodeling. Nature Communications, 2022, 13, .                                                                                                      | 5.8 | 13        |
| 4  | LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover. Gut, 2021, 70, 180-193.                                                                                                                | 6.1 | 86        |
| 5  | Homeostatic regulation of STING by retrograde membrane traffic to the ER. Nature Communications, 2021, 12, 61.                                                                                                                                | 5.8 | 80        |
| 6  | A cell-free assay implicates a role of sphingomyelin and cholesterol in STING phosphorylation.<br>Scientific Reports, 2021, 11, 11996.                                                                                                        | 1.6 | 14        |
| 7  | α-Tocopherol transfer protein (α-TTP). Free Radical Biology and Medicine, 2021, 176, 162-175.                                                                                                                                                 | 1.3 | 21        |
| 8  | Role of Phosphatidylethanolamine Biosynthesis in Herpes Simplex Virus 1-Infected Cells in Progeny<br>Virus Morphogenesis in the Cytoplasm and in Viral Pathogenicity <i>In Vivo</i> . Journal of Virology,<br>2020, 94, .                     | 1.5 | 13        |
| 9  | Elucidation of Gut Microbiota-Associated Lipids Using LC-MS/MS and 16S rRNA Sequence Analyses.<br>IScience, 2020, 23, 101841.                                                                                                                 | 1.9 | 33        |
| 10 | Platelet-activating factor acetylhydrolases: An overview and update. Biochimica Et Biophysica Acta -<br>Molecular and Cell Biology of Lipids, 2019, 1864, 922-931.                                                                            | 1.2 | 38        |
| 11 | Osh Proteins Control Nanoscale Lipid Organization Necessary for PI(4,5)P2 Synthesis. Molecular Cell, 2019, 75, 1043-1057.e8.                                                                                                                  | 4.5 | 47        |
| 12 | Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its<br>TMEM16K-dependent redistribution. Proceedings of the National Academy of Sciences of the United<br>States of America, 2019, 116, 13368-13373. | 3.3 | 63        |
| 13 | Reelin deficiency leads to aberrant lipid composition in mouse brain. Biochemical and Biophysical<br>Research Communications, 2018, 505, 81-86.                                                                                               | 1.0 | 5         |
| 14 | Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING<br>palmitoylation and signaling. Proceedings of the National Academy of Sciences of the United States of<br>America, 2018, 115, E7768-E7775.   | 3.3 | 150       |
| 15 | The binding of TBK1 to STING requires exocytic membrane traffic from the ER. Biochemical and Biophysical Research Communications, 2018, 503, 138-145.                                                                                         | 1.0 | 66        |
| 16 | Autophagosome formation is initiated at phosphatidylinositol synthaseâ€enriched <scp>ER</scp><br>subdomains. EMBO Journal, 2017, 36, 1719-1735.                                                                                               | 3.5 | 158       |
| 17 | The acyltransferase LYCAT controls specific phosphoinositides and related membrane traffic.<br>Molecular Biology of the Cell, 2017, 28, 161-172.                                                                                              | 0.9 | 52        |
| 18 | Endosomal phosphatidylserine is critical for the YAP signalling pathway in proliferating cells. Nature<br>Communications, 2017, 8, 1246.                                                                                                      | 5.8 | 36        |

Hiroyuki Arai

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Omega-3 fatty acid epoxides are autocrine mediators that control the magnitude of IgE-mediated mast cell activation. Nature Medicine, 2017, 23, 1287-1297.                                   | 15.2 | 48        |
| 20 | Magnetic Separation of Autophagosomes from Mammalian Cells Using Magnetic–Plasmonic Hybrid<br>Nanobeads. ACS Omega, 2017, 2, 4929-4937.                                                      | 1.6  | 6         |
| 21 | Therapeutic effects of flurbiprofen axetil on mesenteric traction syndrome: randomized clinical trial.<br>BMC Surgery, 2017, 17, 90.                                                         | 0.6  | 10        |
| 22 | Mg2+ Extrusion from Intestinal Epithelia by CNNM Proteins Is Essential for Gonadogenesis via<br>AMPK-TORC1 Signaling in Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006276.           | 1.5  | 16        |
| 23 | Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites. Stem Cells, 2016, 34, 470-482.                     | 1.4  | 54        |
| 24 | Activation of STING requires palmitoylation at the Golgi. Nature Communications, 2016, 7, 11932.                                                                                             | 5.8  | 436       |
| 25 | Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids. FASEB Journal, 2016, 30, 2027-2039.                                          | 0.2  | 24        |
| 26 | Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic<br>acid in the gut. Scientific Reports, 2015, 5, 9750.                               | 1.6  | 112       |
| 27 | Intracellular Platelet-Activating Factor Acetylhydrolase, Type II. The Enzymes, 2015, 38, 43-54.                                                                                             | 0.7  | 9         |
| 28 | Intracellular PAF-Acetylhydrolase Type I. The Enzymes, 2015, 38, 23-36.                                                                                                                      | 0.7  | 12        |
| 29 | Transport of cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1. Journal of Cell Science, 2015, 128, 3131-42.                                          | 1.2  | 38        |
| 30 | Transport through recycling endosomes requires <scp>EHD</scp> 1 recruitment by a phosphatidylserineÂtranslocase. EMBO Journal, 2015, 34, 669-688.                                            | 3.5  | 113       |
| 31 | Intracellular Transport of Fatâ€Soluble Vitamins A and E. Traffic, 2015, 16, 19-34.                                                                                                          | 1.3  | 70        |
| 32 | Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis. FASEB Journal, 2015, 29, 477-493.                | 0.2  | 76        |
| 33 | Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation. Frontiers in Physiology, 2014, 5, 374.                                           | 1.3  | 116       |
| 34 | Eosinophils control the resolution of inflammation and draining lymph node hypertrophy through the proresolving mediators and CXCL13 pathway in mice. FASEB Journal, 2014, 28, 4036-4043.    | 0.2  | 36        |
| 35 | Identification of 14,20-dihydroxy-docosahexaenoic acid as a novel anti-inflammatory metabolite.<br>Journal of Biochemistry, 2014, 156, 315-321.                                              | 0.9  | 18        |
| 36 | 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload–induced<br>maladaptive cardiac remodeling. Journal of Experimental Medicine, 2014, 211, 1673-1687. | 4.2  | 135       |

Ηιγογικι Arai

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Matrix Metalloproteinase (MMP)-9 in Cancer-Associated Fibroblasts (CAFs) Is Suppressed by Omega-3<br>Polyunsaturated Fatty Acids In Vitro and In Vivo. PLoS ONE, 2014, 9, e89605.                                                | 1.1 | 58        |
| 38 | Impaired α-TTP-PIPs Interaction Underlies Familial Vitamin E Deficiency. Science, 2013, 340, 1106-1110.                                                                                                                          | 6.0 | 117       |
| 39 | LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is required for cortical lamination in mice. Molecular Biology of the Cell, 2012, 23, 4689-4700.                                                           | 0.9 | 119       |
| 40 | A Novel Role for α-Tocopherol Transfer Protein (α-TTP) in Protecting against Chloroquine Toxicity.<br>Journal of Biological Chemistry, 2012, 287, 2926-2934.                                                                     | 1.6 | 17        |
| 41 | Identification and Structure Determination of Novel Anti-inflammatory Mediator Resolvin E3,<br>17,18-Dihydroxyeicosapentaenoic Acid. Journal of Biological Chemistry, 2012, 287, 10525-10534.                                    | 1.6 | 196       |
| 42 | ATP-Binding cassette transporter A1 is involved in hepatic α-tocopherol secretion. Journal of<br>Nutritional Biochemistry, 2010, 21, 451-456.                                                                                    | 1.9 | 47        |
| 43 | <i>Caenorhabditis elegans mboa-7</i> , a Member of the MBOAT Family, Is Required for Selective<br>Incorporation of Polyunsaturated Fatty Acids into Phosphatidylinositol. Molecular Biology of the<br>Cell, 2008, 19, 1174-1184. | 0.9 | 119       |
| 44 | ABCA3 as a Lipid Transporter in Pulmonary Surfactant Biogenesis. Journal of Biological Chemistry,<br>2007, 282, 9628-9634.                                                                                                       | 1.6 | 193       |
| 45 | Regulation of hepatic cholesterol synthesis by a novel protein (SPF) that accelerates cholesterol biosynthesis. FASEB Journal, 2006, 20, 2642-2644.                                                                              | 0.2 | 22        |
| 46 | Vitamin E Is Essential for Mouse Placentation but Not for Embryonic Development Itself. Biology of Reproduction, 2005, 73, 983-987.                                                                                              | 1.2 | 36        |
| 47 | pH-dependent translocation of α-tocopherol transfer protein (α-TTP) between hepatic cytosol and late<br>endosomes. Genes To Cells, 2003, 8, 789-800.                                                                             | 0.5 | 62        |
| 48 | Mammalian homologue ofE. coliras-like GTPase (ERA) is a possible apoptosis regulator with RNA<br>binding activity. Genes To Cells, 2001, 6, 987-1001.                                                                            | 0.5 | 19        |
| 49 | α-Tocopherol Transfer Protein Is Important for the Normal Development of Placental Labyrinthine<br>Trophoblasts in Mice. Journal of Biological Chemistry, 2001, 276, 1669-1672.                                                  | 1.6 | 162       |
| 50 | Phenotypic Modulation of Vascular Smooth Muscle Cells Induced by Unsaturated Lysophosphatidic<br>Acids. Circulation Research, 2001, 89, 251-258.                                                                                 | 2.0 | 172       |
| 51 | CD36, a Member of Class B Scavenger Receptor Family, Is a Receptor for Advanced Glycation End<br>Products. Annals of the New York Academy of Sciences, 2001, 947, 350-355.                                                       | 1.8 | 57        |
| 52 | Homologs of the ?- and ?-subunits of mammalian brain platelet-activating factor acetylhydrolase Ib in theDrosophila melanogaster genome. , 2000, 39, 1-8.                                                                        |     | 25        |
| 53 | MOLECULAR MECHANISMS OF VITAMIN E TRANSPORT. Annual Review of Nutrition, 1999, 19, 343-355.                                                                                                                                      | 4.3 | 239       |
| 54 | Developmental changes in the expression of α-tocopherol transfer protein during the neonatal period of rat. BioFactors, 1998, 7, 87-91.                                                                                          | 2.6 | 7         |

Hiroyuki Arai

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Localization of α-tocopherol transfer protein in rat brain. Neuroscience Letters, 1998, 256, 159-162.                                                                     | 1.0  | 101       |
| 56 | Binding of α-tocopherylquinone, an oxidized form of α-tocopherol, to glutathione-S-transferase in the<br>liver cytosol. FEBS Letters, 1998, 436, 424-426.                 | 1.3  | 41        |
| 57 | Affinity for αâ€ŧocopherol transfer protein as a determinant of the biological activities of vitamin E<br>analogs. FEBS Letters, 1997, 409, 105-108.                      | 1.3  | 556       |
| 58 | Friedreich-like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the ?-Tocopherol transfer protein gene. Annals of Neurology, 1997, 41, 826-832.      | 2.8  | 137       |
| 59 | Recent Progress in Intracellular Lipid Transport. The Journal of Japan Atherosclerosis Society, 1997, 24, 771-779.                                                        | 0.0  | 0         |
| 60 | Age-related Changes of .ALPHATocopherol Transfer Protein Expression in Rat Liver Journal of<br>Nutritional Science and Vitaminology, 1996, 42, 11-18.                     | 0.2  | 33        |
| 61 | Retinitis Pigmentosa and Ataxia Caused by a Mutation in the Gene for the α-Tocopherol–Transfer<br>Protein. New England Journal of Medicine, 1996, 335, 1770-1771.         | 13.9 | 67        |
| 62 | .ALPHATocopherol Transfer Protein and Familial Vitamin E Deficiency Journal of Japan Oil Chemists'<br>Society, 1996, 45, 425-434.                                         | 0.3  | 0         |
| 63 | Ataxia with isolated vitamin E deficiency is caused by mutations in the α–tocopherol transfer protein.<br>Nature Genetics, 1995, 9, 141-145.                              | 9.4  | 590       |
| 64 | Adult-Onset Spinocerebellar Dysfunction Caused by a Mutation in the Gene for the<br>α-Tocopherol–Transfer Protein. New England Journal of Medicine, 1995, 333, 1313-1319. | 13.9 | 199       |
| 65 | Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor. Nature, 1994, 370, 216-218.                                                       | 13.7 | 481       |
| 66 | Purification and characterization of the αâ€ŧocopherol transfer protein from rat liver. FEBS Letters,<br>1991, 288, 41-45.                                                | 1.3  | 189       |
| 67 | Structure and Function of Plasma Lipoprotein. Journal of Japan Oil Chemists Society, 1991, 40, 858-868.                                                                   | 0.1  | 0         |