List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/994587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploration of the dynamic interplay between lipids and membrane proteins by hydrostatic pressure. Nature Communications, 2022, 13, 1780.	12.8	12
2	Structural Insights into the Intrinsically Disordered GPCR C-Terminal Region, Major Actor in Arrestin-GPCR Interaction. Biomolecules, 2022, 12, 617.	4.0	7
3	Design and characterization of a triazole-based growth hormone secretagogue receptor modulator inhibiting the glucoregulatory and feeding actions of ghrelin. Biochemical Pharmacology, 2022, 202, 115114.	4.4	0
4	Fluorescent Pâ€Hydroxyphosphole for Peptide Labeling through Pâ€N Bond Formation. Chemistry - A European Journal, 2022, 28, .	3.3	5
5	The ups and downs of growth hormone secretagogue receptor signaling. FEBS Journal, 2021, 288, 7213-7229.	4.7	19
6	G protein oupled receptors can control the Hippo/YAP pathway through Gq signaling. FASEB Journal, 2021, 35, e21668.	0.5	14
7	Allosteric modulation of ghrelin receptor signaling by lipids. Nature Communications, 2021, 12, 3938.	12.8	26
8	Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations. Cell Reports, 2021, 36, 109648.	6.4	32
9	LEAP2 Impairs the Capability of the Growth Hormone Secretagogue Receptor to Regulate the Dopamine 2 Receptor Signaling. Frontiers in Pharmacology, 2021, 12, 712437.	3.5	13
10	Concerted conformational dynamics and water movements in the ghrelin G protein-coupled receptor. ELife, 2021, 10, .	6.0	5
11	Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren. Nature Communications, 2021, 12, 6410.	12.8	27
12	Development of Nonpeptidic Inverse Agonists of the Ghrelin Receptor (GHSR) Based on the 1,2,4-Triazole Scaffold. Journal of Medicinal Chemistry, 2020, 63, 10796-10815.	6.4	10
13	Biotinylated non-ionic amphipols for GPCR ligands screening. Methods, 2020, 180, 69-78.	3.8	6
14	IDPs and their complexes in GPCR and nuclear receptor signaling. Progress in Molecular Biology and Translational Science, 2020, 174, 105-155.	1.7	6
15	Structure of the agonist 12–HHT in its BLT2 receptor-bound state. Scientific Reports, 2020, 10, 2630.	3.3	8
16	Structure and dynamics of G protein-coupled receptor–bound ghrelin reveal the critical role of the octanoyl chain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17525-17530.	7.1	53
17	Development of a novel fluorescent ligand of growth hormone secretagogue receptor based on the N-Terminal Leap2 region. Molecular and Cellular Endocrinology, 2019, 498, 110573.	3.2	24
18	NMR analysis of GPCR conformational landscapes and dynamics. Molecular and Cellular Endocrinology, 2019, 484, 69-77.	3.2	30

#	Article	IF	CITATIONS
19	N-Terminal Liver-Expressed Antimicrobial Peptide 2 (LEAP2) Region Exhibits Inverse Agonist Activity toward the Ghrelin Receptor. Journal of Medicinal Chemistry, 2019, 62, 965-973.	6.4	103
20	GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4501-4506.	7.1	55
21	Conditional and Reversible Activation of Class A and B G Protein-Coupled Receptors Using Tethered Pharmacology. ACS Central Science, 2018, 4, 166-179.	11.3	27
22	Illuminating the Energy Landscape of GPCRs: The Key Contribution of Solution-State NMR Associated with Escherichia coli as an Expression Host. Biochemistry, 2018, 57, 2297-2307.	2.5	19
23	Direct coupling of detergent purified human mGlu5 receptor to the heterotrimeric G proteins Gq and Gs. Scientific Reports, 2018, 8, 4407.	3.3	18
24	NMR Spectroscopy for the Characterization of GPCR Energy Landscapes. Topics in Medicinal Chemistry, 2017, , 27-52.	0.8	2
25	New ligands of the ghrelin receptor based on the 1,2,4-triazole scaffold by introduction of a second chiral center. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2408-2412.	2.2	6
26	Cardioprotective Angiotensin-(1–7) Peptide Acts as a Natural-Biased Ligand at the Angiotensin II Type 1 Receptor. Hypertension, 2016, 68, 1365-1374.	2.7	87
27	Functional Modulation of a G Protein-Coupled Receptor Conformational Landscape in a Lipid Bilayer. Journal of the American Chemical Society, 2016, 138, 11170-11175.	13.7	78
28	The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release. British Journal of Pharmacology, 2016, 173, 1314-1328.	5.4	9
29	Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles. Biochemistry, 2016, 55, 38-48.	2.5	85
30	Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling. Journal of Biological Chemistry, 2015, 290, 27021-27039.	3.4	76
31	Ghrelin receptor conformational dynamics regulate the transition from a preassembled to an active receptor:Gq complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1601-1606.	7.1	69
32	Recombinant Human Melatonin Receptor MT1 Isolated in Mixed Detergents Shows Pharmacology Similar to That in Mammalian Cell Membranes. PLoS ONE, 2014, 9, e100616.	2.5	21
33	Amphipols in G Protein-Coupled Receptor Pharmacology: What Are They Good For?. Journal of Membrane Biology, 2014, 247, 853-860.	2.1	12
34	Bacterial Expression and Stabilization of GPCRs. , 2014, , 71-86.		0
35	Heterodimerization with Its Splice Variant Blocks the Ghrelin Receptor 1a in a Non-signaling Conformation. Journal of Biological Chemistry, 2013, 288, 24656-24665.	3.4	48
36	How ligands and signalling proteins affect G-protein-coupled receptors' conformational landscape. Biochemical Society Transactions, 2013, 41, 144-147.	3.4	10

#	Article	IF	CITATIONS
37	Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1512-1517.	7.1	258
38	Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16342-16347.	7.1	152
39	Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6733-6738.	7.1	173
40	Nonionic Homopolymeric Amphipols: Application to Membrane Protein Folding, Cell-Free Synthesis, and Solution Nuclear Magnetic Resonance. Biochemistry, 2012, 51, 1416-1430.	2.5	86
41	High Constitutive Activity Is an Intrinsic Feature of Ghrelin Receptor Protein. Journal of Biological Chemistry, 2012, 287, 3630-3641.	3.4	132
42	Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8304-8309.	7.1	95
43	New advances in production and functional folding of G-protein-coupled receptors. Trends in Biotechnology, 2011, 29, 314-322.	9.3	73
44	Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range. Journal of Biomolecular NMR, 2011, 50, 191-195.	2.8	21
45	Homogeneous time-resolved fluorescence-based assay to screen for ligands targeting the growth hormone secretagogue receptor type 1a. Analytical Biochemistry, 2011, 408, 253-262.	2.4	75
46	G Protein Activation by Serotonin Type 4 Receptor Dimers. Journal of Biological Chemistry, 2011, 286, 9985-9997.	3.4	69
47	Leukotriene BLT2 Receptor Monomers Activate the Gi2 GTP-binding Protein More Efficiently than Dimers. Journal of Biological Chemistry, 2010, 285, 6337-6347.	3.4	51
48	Structure of a GPCR Ligand in Its Receptor-Bound State: Leukotriene B4 Adopts a Highly Constrained Conformation When Associated to Human BLT2. Journal of the American Chemical Society, 2010, 132, 9049-9057.	13.7	66
49	Activation of the Ghrelin Receptor is Described by a Privileged Collective Motion: A Model for Constitutive and Agonist-induced Activation of a Sub-class A G-Protein Coupled Receptor (GPCR). Journal of Molecular Biology, 2010, 395, 769-784.	4.2	32
50	Mammalian Membrane Receptors Expression as Inclusion Bodies in Escherichia coli. Methods in Molecular Biology, 2010, 601, 39-48.	0.9	11
51	Inhibition of Heterotrimeric G Protein Signaling by a Small Molecule Acting on Gα Subunit. Journal of Biological Chemistry, 2009, 284, 29136-29145.	3.4	67
52	Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer- specific chemo-and radiosensitization. Cell Cycle, 2009, 8, 2779-2788.	2.6	44
53	Engineering a G protein-coupled receptor for structural studies: Stabilization of the BLT1 receptor ground state. Protein Science, 2009, 18, NA-NA.	7.6	13
54	Removing the invariant salt bridge of parvalbumin increases flexibility in the <i>AB</i> -loop structure. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 733-743.	2.5	4

#	Article	IF	CITATIONS
55	β-arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor signalling. EMBO Journal, 2009, 28, 2706-2718.	7.8	62
56	Amphipol-Assisted in Vitro Folding of G Protein-Coupled Receptors. Biochemistry, 2009, 48, 6516-6521.	2.5	93
57	G Protein Activation by the Leukotriene B4 Receptor Dimer. Journal of Biological Chemistry, 2008, 283, 21084-21092.	3.4	42
58	New tensio-active molecules stabilize a human G protein-coupled receptor in solution. FEBS Letters, 2007, 581, 1944-1950.	2.8	11
59	Serine Phosphorylation-Dependent Coregulation of Topoisomerase I by the p14ARF Tumor Suppressor. Biochemistry, 2007, 46, 14325-14334.	2.5	11
60	Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO Journal, 2006, 25, 5693-5702.	7.8	133
61	Molecular Characterization of a Purified 5-HT4 Receptor. Journal of Biological Chemistry, 2005, 280, 20253-20260.	3.4	133
62	Cooperative Conformational Changes in a C-protein-coupled Receptor Dimer, the Leukotriene B4 Receptor BLT1. Journal of Biological Chemistry, 2004, 279, 49664-49670.	3.4	67
63	Nonpeptide RGD Antagonists: A Novel Class of Mimetics, the 5,8-Disubstituted 1-Azabicyclo[5.2.0]nonan-2-one Lactam ChemInform, 2003, 34, no.	0.0	0
64	Nonpeptide RGD antagonists: A novel class of mimetics, the 5,8-disubstituted 1-azabicyclo[5.2.0]nonan-2-one lactam. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1561-1564.	2.2	19
65	Structure-based Analysis of GPCR Function: Conformational Adaptation of both Agonist and Receptor upon Leukotriene B4 Binding to Recombinant BLT1. Journal of Molecular Biology, 2003, 329, 801-814.	4.2	148
66	Structure-based Analysis of GPCR Function: Evidence for a Novel Pentameric Assembly between the Dimeric Leukotriene B4 Receptor BLT1 and the G-protein. Journal of Molecular Biology, 2003, 329, 815-829.	4.2	265
67	Photochemical Rearrangement of Oxaziridines and Nitrones in the Hexahydroindole Series: A Convenient Synthetic Route to 1-Azabicyclo[5.2.0]nonan-2-ones as Novel RGD Mimetics. Organic Letters, 2001, 3, 3067-3070.	4.6	29
68	A Minimized Human Integrin α5β1 That Retains Ligand Recognition. Journal of Biological Chemistry, 2000, 275, 5888-5903.	3.4	44
69	Synthesis and Glutathione S-Transferase Structureâ^'Affinity Relationships of Nonpeptide and Peptidase-Stable Glutathione Analogues. Journal of Medicinal Chemistry, 1998, 41, 2278-2288.	6.4	13
70	The Cation-binding Domain from the α Subunit of Integrin α5β1 Is a Minimal Domain for Fibronectin Recognition. Journal of Biological Chemistry, 1998, 273, 24744-24753.	3.4	34
71	The N tails of histones H3 and H4 adopt a highly structured conformation in the nucleosome 1 1Edited by T. Richmond. Journal of Molecular Biology, 1997, 273, 503-508.	4.2	78