Tae Hyung Lee

List of Publications by Citations

Source: https://exaly.com/author-pdf/9945131/tae-hyung-lee-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

69
papers1,360
citations22
h-index34
g-index74
ext. papers1,891
ext. citations8.1
avg, IF5.05
L-index

#	Paper	IF	Citations
69	Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media. <i>Green Chemistry</i> , 2018 , 20, 3809-3817	10	119
68	Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. Journal of Materials Chemistry C, 2019 , 7, 9782-9802	7.1	68
67	Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst. <i>Nanomaterials</i> , 2016 , 6,	5.4	60
66	Copper oxide-graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. <i>Nano Convergence</i> , 2019 , 6, 6	9.2	59
65	Tailoring Crystallographic Orientations to Substantially Enhance Charge Separation Efficiency in Anisotropic BiVO4 Photoanodes. <i>ACS Catalysis</i> , 2018 , 8, 5952-5962	13.1	59
64	Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution. <i>Research on Chemical Intermediates</i> , 2019 , 45, 599-611	2.8	57
63	Tailored NiOx/Ni Cocatalysts on Silicon for Highly Efficient Water Splitting Photoanodes via Pulsed Electrodeposition. <i>ACS Catalysis</i> , 2018 , 8, 7261-7269	13.1	54
62	SnS Nanograins on Porous SiO Nanorods Template for Highly Sensitive NO Sensor at Room Temperature with Excellent Recovery. <i>ACS Sensors</i> , 2019 , 4, 678-686	9.2	47
61	Water Splitting Exceeding 17% Solar-to-Hydrogen Conversion Efficiency Using Solution-Processed Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 33835-33843	9.5	39
60	Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen. <i>Nanoscale</i> , 2019 , 11, 2966-2973	7.7	38
59	Direct synthesis of two-dimensional MoS2 on p-type Si and application to solar hydrogen production. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	37
58	All-Solution-Processed WO/BiVO Core-Shell Nanorod Arrays for Highly Stable Photoanodes. <i>ACS Applied Materials & District Materials & D</i>	9.5	37
57	Boosting Aerobic Oxidation of Alcohols via Synergistic Effect between TEMPO and a Composite FeO/Cu-BDC/GO Nanocatalyst. <i>ACS Omega</i> , 2020 , 5, 5182-5191	3.9	33
56	Enhanced Oxygen Evolution Electrocatalysis in Strained A-Site Cation Deficient LaNiO Perovskite Thin Films. <i>Nano Letters</i> , 2020 , 20, 8040-8045	11.5	30
55	Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries. <i>Scientific Reports</i> , 2019 , 9, 13573	4.9	29
54	A Hybrid Energy Storage Mechanism of Zinc Hexacyanocobaltate-Based Metal D rganic Framework Endowing Stationary and High-Performance Lithium-Ion Storage. <i>Electronic Materials Letters</i> , 2019 , 15, 444-453	2.9	24
53	Substantially improved room temperature NO2 sensing in 2-dimensional SnS2 nanoflowers enabled by visible light illumination. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11168-11178	13	24

(2018-2019)

52	Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage <i>RSC Advances</i> , 2019 , 9, 26668-26675	3.7	23
51	Realization of Lithium-Ion Capacitors with Enhanced Energy Density via the Use of Gadolinium Hexacyanocobaltate as a Cathode Material. <i>ACS Applied Materials & Description</i> (2019), 11, 31799-318	3 <i>85</i> ⁵	23
50	Fabrication of a WS/p-Si Heterostructure Photocathode Using Direct Hybrid Thermolysis. <i>ACS Applied Materials & Direct Mybrid Thermolysis. <i>ACS Applied Materials & Direct Mybrid Thermolysis & Dire</i></i>	9.5	23
49	Layered metal-organic framework based on tetracyanonickelate as a cathode material for Li-ion storage <i>RSC Advances</i> , 2019 , 9, 21363-21370	3.7	23
48	Pd- and Au-Decorated MoS2 Gas Sensors for Enhanced Selectivity. <i>Electronic Materials Letters</i> , 2019 , 15, 368-376	2.9	22
47	Metal-organic framework-derived metal oxide nanoparticles@reduced graphene oxide composites as cathode materials for rechargeable aluminium-ion batteries. <i>Scientific Reports</i> , 2019 , 9, 13739	4.9	21
46	Properties of CoS2/CNT as a Cathode Material of Rechargeable Aluminum-Ion Batteries. <i>Electronic Materials Letters</i> , 2019 , 15, 727-732	2.9	21
45	Enhanced Optical Properties and Stability of CsPbBr3 Nanocrystals Through Nickel Doping. <i>Advanced Functional Materials</i> , 2021 , 31, 2102770	15.6	20
44	Tailored Graphene Micropatterns by Wafer-Scale Direct Transfer for Flexible Chemical Sensor Platform. <i>Advanced Materials</i> , 2021 , 33, e2004827	24	20
43	MoSeEGO/rGO Composite Catalyst for Hydrogen Evolution Reaction. <i>Polymers</i> , 2018 , 10,	4.5	20
42	Facile synthesis of CsPbBr/PbSe composite clusters. <i>Science and Technology of Advanced Materials</i> , 2018 , 19, 10-17	7.1	19
41	Cerium Hexacyanocobaltate: A Lanthanide-Compliant Prussian Blue Analogue for Li-Ion Storage. <i>ACS Omega</i> , 2019 , 4, 21410-21416	3.9	19
40	S@GO as a High-Performance Cathode Material for Rechargeable Aluminum-Ion Batteries. <i>Electronic Materials Letters</i> , 2019 , 15, 720-726	2.9	18
39	Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries. <i>Scientific Reports</i> , 2019 , 9, 13665	4.9	18
38	Ni3Se4@MoSe2 Composites for Hydrogen Evolution Reaction. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 5035	2.6	18
37	Tailoring of Interfacial Band Offsets by an Atomically Thin Polar Insulating Layer To Enhance the Water-Splitting Performance of Oxide Heterojunction Photoanodes. <i>Nano Letters</i> , 2019 , 19, 5897-5903	11.5	17
36	Tailorable Topologies for Selectively Controlling Crystals of Expanded Prussian Blue Analogues. <i>Crystal Growth and Design</i> , 2019 , 19, 7385-7395	3.5	14
35	Comprehensive Study on the Morphology Control of TiO2 Nanorods on Foreign Substrates by the Hydrothermal Method. <i>Crystal Growth and Design</i> , 2018 , 18, 6504-6512	3.5	14

34	CdSe Quantum Dots Doped WS2 Nanoflowers for Enhanced Solar Hydrogen Production. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1800853	1.6	12
33	All-Solution-Processed BiVO4/TiO2 Photoanode with NiCo2O4 Nanofiber Cocatalyst for Enhanced Solar Water Oxidation. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5646-5656	6.1	11
32	Electrochemical activity of Samarium on starch-derived porous carbon: rechargeable Li- and Al-ion batteries. <i>Nano Convergence</i> , 2020 , 7, 11	9.2	11
31	Tungsten Trioxide Doped with CdSe Quantum Dots for Smart Windows. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 43785-43791	9.5	11
30	Manufacturing ZrB-SiC-TaC Composite: Potential Application for Aircraft Wing Assessed by Frequency Analysis through Finite Element Model. <i>Materials</i> , 2020 , 13,	3.5	10
29	Regulating the Catalytic Dynamics Through a Crystal Structure Modulation of Bimetallic Catalyst. <i>Advanced Energy Materials</i> , 2020 , 10, 1903225	21.8	10
28	Synthesis of MoSx/Ni-metal-organic framework-74 composites as efficient electrocatalysts for hydrogen evolution reactions. <i>International Journal of Energy Research</i> , 2021 , 45, 9638-9647	4.5	10
27	Influence of C3N4 Precursors on Photoelectrochemical Behavior of TiO2/C3N4 Photoanode for Solar Water Oxidation. <i>Energies</i> , 2020 , 13, 974	3.1	9
26	Direct Observation of Surface Potential Distribution in Insulation Resistance Degraded Acceptor-Doped BaTiO3 Multilayered Ceramic Capacitors. <i>Electronic Materials Letters</i> , 2018 , 14, 629-635	5 ^{2.9}	9
25	Understanding the Enhancement of the Catalytic Properties of Goethite by Transition Metal Doping: Critical Role of O* Formation Energy Relative to OH* and OOH*. <i>ACS Applied Energy Materials</i> , 2020 , 3, 1634-1643	6.1	9
24	Edge-exposed WS2 on 1D nanostructures for highly selective NO2 sensor at room temperature. Sensors and Actuators B: Chemical, 2021 , 333, 129566	8.5	8
23	Microscopic evidence of strong interactions between chemical vapor deposited 2D MoS film and SiO growth template. <i>Nano Convergence</i> , 2021 , 8, 11	9.2	8
22	Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO Nanorods Decorated by Edge-Rich MoS Nanoplates. <i>Small</i> , 2021 , 17, e2103457	11	8
21	Grain Boundaries Boost Oxygen Evolution Reaction in NiFe Electrocatalysts <i>Small Methods</i> , 2021 , 5, e2000755	12.8	7
20	Daylight-Induced Metal-Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays. <i>ACS Applied Materials & Dioxide Samp; Interfaces</i> , 2019 , 11, 11568-11578	9.5	6
19	Surface-Tailored Medium Entropy Alloys as Radically Low Overpotential Oxygen Evolution Electrocatalysts <i>Small</i> , 2022 , e2105611	11	6
18	Rendering Redox Reactions of Cathodes in Li-Ion Capacitors Enabled by Lanthanides. <i>ACS Omega</i> , 2020 , 5, 1634-1639	3.9	6
17	Stabilization of NiFe Layered Double Hydroxides on n-Si by an Activated TiO2 Interlayer for Efficient Solar Water Oxidation. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12298-12307	6.1	6

LIST OF PUBLICATIONS

16	Direct Synthesis of Molybdenum Phosphide Nanorods on Silicon Using Graphene at the Heterointerface for Efficient Photoelectrochemical Water Reduction. <i>Nano-Micro Letters</i> , 2021 , 13, 81	19.5	6
15	Core-shell architecture of NiSe2 nanoparticles@nitrogen-doped carbon for hydrogen evolution reaction in acidic and alkaline media. <i>International Journal of Energy Research</i> , 2021 , 45, 20463	4.5	4
14	Rationally Designed TiO Nanostructures of Continuous Pore Network for Fast-Responding and Highly Sensitive Acetone Sensor <i>Small Methods</i> , 2021 , 5, e2100941	12.8	3
13	Surface-tailored graphene channels. Npj 2D Materials and Applications, 2021, 5,	8.8	3
12	Bi catalysts supported on GaN nanowires toward efficient photoelectrochemical CO2 reduction. Journal of Materials Chemistry A, 2022 , 10, 7869-7877	13	3
11	Enhancement of Ferroelectric Properties of Superlattice-Based Epitaxial BiFeO3 Thin Films via Substitutional Doping Effect. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 11564-11571	3.8	2
10	Visible Light Driven Ultrasensitive and Selective NO Detection in Tin Oxide Nanoparticles with Sulfur Doping Assisted by l-Cysteine <i>Small</i> , 2022 , e2106613	11	2
9	Controlled Band Offsets in Ultrathin Hematite for Enhancing the Photoelectrochemical Water Splitting Performance of Heterostructured Photoanodes <i>ACS Applied Materials & Discrete Section</i> 2022,	9.5	2
8	Crystal Facet Engineering of TiO Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO Nanodots <i>Nano-Micro Letters</i> , 2022 , 14, 48	19.5	2
7	High Hole Mobility Inorganic Halide Perovskite Field-Effect Transistors with Enhanced Phase Stability and Interfacial Defect Tolerance. <i>Advanced Electronic Materials</i> , 2022 , 8, 2100624	6.4	2
6	Stabilization of FCC Phase Using Mn Incorporation in Nanograin Invar Alloy Foils Fabricated by Electroforming. <i>Electronic Materials Letters</i> , 2020 , 16, 188-194	2.9	1
5	Architecture engineering of nanostructured catalyst via layer-by-layer adornment of multiple nanocatalysts on silica nanorod arrays for hydrogenation of nitroarenes <i>Scientific Reports</i> , 2022 , 12, 2	4.9	1
4	Voltage-dependent gas discrimination using self-activated graphene with Pt decoration. <i>Sensors and Actuators B: Chemical</i> , 2021 , 349, 130696	8.5	1
3	Chemical modification of ordered/disordered carbon nanostructures for metal hosts and electrocatalysts of lithium-air batteries. <i>InformatalMaterilly</i> , 2022 , 4,	23.1	1
2	Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge-Rich MoS2 Nanoplates (Small 39/2021). <i>Small</i> , 2021 , 17, 2170206	11	
1	Suppression of metal-to-insulator transition using strong interfacial coupling at cubic and orthorhombic perovskite oxide heterointerfaces. <i>Nanoscale</i> , 2021 , 13, 708-715	7.7	