Fİlİz Å**ž**hİn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9944531/publications.pdf

Version: 2024-02-01

471509 501196 54 845 17 28 citations h-index g-index papers 63 63 63 962 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microstructure and densification of ZrB2–SiC composites prepared by spark plasma sintering. Journal of the European Ceramic Society, 2009, 29, 2379-2385.	5.7	100
2	Effect of particle size, heating rate and CNT addition on densification, microstructure and mechanical properties of B4C ceramics. Ceramics International, 2015, 41, 8936-8944.	4.8	63
3	Increased osteoblast adhesion on nanoparticulate calcium phosphates with higher Ca/P ratios. Journal of Biomedical Materials Research - Part A, 2008, 85A, 236-241.	4.0	60
4	Preparation of AlON ceramics via reactive spark plasma sintering. Journal of the European Ceramic Society, 2012, 32, 925-929.	5.7	54
5	Processing and characterization of spark plasma sintered TZM alloy. Journal of Alloys and Compounds, 2016, 685, 860-868.	5.5	51
6	Spark plasma sintering of B4C–SiC composites. Solid State Sciences, 2012, 14, 1660-1663.	3.2	49
7	Effect of CeO2 addition on densification and microstructure of Al2O3–YSZ composites. Ceramics International, 2011, 37, 3273-3280.	4.8	42
8	The Preparation of Ferroboron and Ferrovanadium by Aluminothermic Reduction. High Temperature Materials and Processes, 1996, 15, 103-110.	1.4	38
9	Chloride removal from zinc ash. Scandinavian Journal of Metallurgy, 2000, 29, 224-230.	0.3	37
10	Preparation and structural investigation of nanostructured oxide dispersed strengthened steels. Journal of Materials Science, 2011, 46, 4598-4605.	3.7	32
11	Spark plasma sintered Al2O3–YSZ–TiO2 composites: Processing, characterization and in vivo evaluation. Materials Science and Engineering C, 2014, 40, 16-23.	7.3	30
12	Synthesis and microstructural characterization of nano-size calcium phosphates with different stoichiometry. Ceramics International, 2011, 37, 971-977.	4.8	27
13	Spark plasma sintered ZrC-TiC-GNP composites: Solid solution formation and mechanical properties. Ceramics International, 2018, 44, 2336-2344.	4.8	24
14	Manufacture and examination of C/Si3N4 nanocomposites. Journal of the European Ceramic Society, 2004, 24, 3287-3294.	5.7	22
15	Production and characterization of TZM based TiC or ZrC reinforced composites prepared by spark plasma sintering (SPS). Journal of Alloys and Compounds, 2019, 781, 433-439.	5.5	19
16	Radiation Shielding Properties of Spark Plasma Sintered Boron Carbide-Aluminium Composites. Acta Physica Polonica A, 2015, 128, B-132-B-135.	0.5	19
17	Thermochemical modeling and experimental studies on the formation of TiB2 through carbothermic synthesis from TiO2 and B2O3 or B4C. Ceramics International, 2017, 43, 10975-10982.	4.8	18
18	The Spark Plasma Sintering of Silicon Carbide Ceramics Using Alumina. Acta Physica Polonica A, 2014, 125, 257-259.	0.5	16

#	Article	IF	CITATIONS
19	Diffusion Bonding of Magnesium, Zirconium and Titanium as Implant Material. Materials Science Forum, 2007, 546-549, 417-420.	0.3	15
20	Spark Plasma Sintering of Boron Carbide Ceramics Using Different Sample Geometries and Dimensions. Acta Physica Polonica A, 2014, 125, 260-262.	0.5	15
21	Microstructural and mechanical investigation of hydroxyapatite–zirconia nanocomposites prepared by spark plasma sintering. Journal of the European Ceramic Society, 2013, 33, 2313-2319.	5.7	13
22	Microstructure and ferroelectric properties of spark plasma sintered Li substituted K0.5Na0.5NbO3 ceramics. Journal of the Ceramic Society of Japan, 2011, 119, 355-361.	1.1	12
23	Effects of <i>SiC </i> and <i>SiC </i> -GNP additions on the mechanical properties and oxidation behavior of NbB < sub > 2 . Journal of Asian Ceramic Societies, 2019, 7, 170-182.	2.3	9
24	<i>In Situ</i> Synthesis of B ₄ C / TiB ₂ Composites from Low Cost Sugar Based Precursor. Defect and Diffusion Forum, 2010, 297-301, 52-56.	0.4	8
25	C-CNT Produced by Spark Plasma Sintering. Acta Physica Polonica A, 2015, 127, 1029-1031.	0.5	7
26	Properties of Si3N4/SiC composites produced via spark plasma sintering. International Journal of Materials Research, 2012, 103, 1337-1339.	0.3	6
27	Preparation and characterisation of self-flowing refractory material containing 971U type microsilica. Advances in Applied Ceramics, 2010, 109, 6-11.	1.1	5
28	Production of Aluminum-Titanium-Boron Master Alloy by Aluminothermic Process. High Temperature Materials and Processes, 2001, 20, 137-142.	1.4	4
29	Correlation between Milling Parameters, Structural and Mechanical Properties of Nanostructured Austenitic Y ₂ 0 ₃ Strengthened Steels. Materials Science Forum, 0, 729, 409-414.	0.3	4
30	Microstructural and magnetic characteristics of ceramic dispersion strengthened sintered stainless steels after thermal ageing. Fusion Engineering and Design, 2019, 145, 46-53.	1.9	4
31	Processing, Mechanical and Nuclear Characterization of Boron Carbide Ceramics Consolidated by Spark Plasma Sintering. Acta Physica Polonica A, 2015, 128, B-187-B-190.	0.5	4
32	Fabrication of Transparent Yttria Ceramics by Spark Plasma Sintering. Acta Physica Polonica A, 2017, 131, 460-462.	0.5	4
33	Synthesis of B ₄ C/SiC Composite from Sugar Based Precursor. Defect and Diffusion Forum, 0, 283-286, 268-272.	0.4	3
34	B4C-TiB2 Composites via Reactive Hot Pressing. High Temperature Materials and Processes, 2009, 28, 277-284.	1.4	3
35	Processing and mechanical characterisation of monolithic silicon carbide ceramic consolidated by spark plasma sintering (SPS). International Journal of Materials Research, 2013, 104, 1240-1246.	0.3	3
36	Microstructural Investigation of TZM Alloys processed by Spark Plasma Sintering. MRS Advances, 2016, 1, 1183-1190.	0.9	3

#	Article	IF	CITATIONS
37	Ab-initio study of paramagnetic defects in Mn and Cr doped transparent polycrystalline Al2O3 ceramics. Synthesis and Sintering, 2021, 1 , .	1.6	3
38	Microstructural and Mechanical Investigation of Hot Pressed WC-Co/B ₄ C Composites. Key Engineering Materials, 2004, 264-268, 1017-1020.	0.4	2
39	Effect of Si3N4 addition on the morphological and structural properties of the 316L stainless steel for nuclear applications. Resolution and Discovery, 2017, 2, 23-30.	0.4	2
40	Synthesis of Mn2O3 Nanopowders with Urea and Citric Acid by Solution Combustion Route. Minerals, Metals and Materials Series, 2017, , 39-46.	0.4	2
41	Spark Plasma Sintering of Boron Carbide Ceramics Using Metallic Silicon in Square Cross Section. Acta Physica Polonica A, 2015, 127, 1370-1372.	0.5	2
42	The Preparation of \hat{l}^2 Sialon from Kaolin by Carbonitrothermic Reduction. High Temperature Materials and Processes, 1996, 15, 97-102.	1.4	1
43	Production of Aluminum Nitride Powders from SeydiÅŸehir Aluminum Hydroxide. Key Engineering Materials, 2004, 264-268, 105-108.	0.4	1
44	Sintered transparent polycrystalline ceramics: the next generation of fillers for clarity enhancement in corundum. Synthesis and Sintering, 2021, 1, 183-188.	1.6	1
45	Comparative study of reactive and nonreactive spark plasma sintering routes for the production of TaB ₂ â€₹aC composites. International Journal of Applied Ceramic Technology, 2022, 19, 332-343.	2.1	1
46	Diffusion Bonding of Magnesium, Zirconium and Titanium as Implant Material. Materials Science Forum, 0, , 417-420.	0.3	1
47	Comparative investigation of the properties of graphene nanoplatelet reinforced titanium diboride and niobium diboride ceramics. International Journal of Refractory Metals and Hard Materials, 2022, 103, 105761.	3.8	1
48	Nitridation of Ti-B-Al-Al2O3 Composite Powder. High Temperature Materials and Processes, 2001, 20, 429-435.	1.4	0
49	Sintering and Mechanical Properties of Hydroxyapatite-Zirconia Composite Ceramics. Key Engineering Materials, 2002, 206-213, 1629-1632.	0.4	0
50	Gamma and Neutron Shielding Behavior of Spark Plasma Sintered Boron Carbide-Tungsten Based Composites., 0,, 449-456.		0
51	Development of Enamel Coatings in Accordance with Recent Regulations of Food Contact Materials. Minerals, Metals and Materials Series, 2017, , 739-746.	0.4	0
52	Spark Plasma Sintering of Si3N4/C Composites. Materialpruefung/Materials Testing, 2010, 52, 374-378.	2.2	0
53	Consolidation of TiB2 Ceramics by using Spark Plasma Sintering. , 2014, , 1101-1107.		0
54	Gamma and Neutron Shielding Behavior of Spark Plasma Sintered Boron Carbide-Tungsten Based Composites., 2016,, 449-456.		0