Mary E Dickinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9943107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identifying genetic determinants of inflammatory pain in mice using a large-scale gene-targeted screen. Pain, 2022, 163, 1139-1157.	4.2	4
2	AAV5 delivery of CRISPR-Cas9 supports effective genome editing in mouse lung airway. Molecular Therapy, 2022, 30, 238-243.	8.2	25
3	Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. , 2022, 1, 157-173.		22
4	FOXO1 represses sprouty 2 and sprouty 4 expression to promote arterial specification and vascular remodeling in the mouse yolk sac. Development (Cambridge), 2022, 149, .	2.5	5
5	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	21.4	60
6	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
7	COPB2 loss of function causes a coatopathy with osteoporosis and developmental delay. American Journal of Human Genetics, 2021, 108, 1710-1724.	6.2	18
8	Soft windowing application to improve analysis of high-throughput phenotyping data. Bioinformatics, 2020, 36, 1492-1500.	4.1	9
9	<scp>CreLite</scp> : An optogenetically controlled Cre/ <scp>loxP</scp> system using red light. Developmental Dynamics, 2020, 249, 1394-1403.	1.8	13
10	A global Slc7a7 knockout mouse model demonstrates characteristic phenotypes of human lysinuric protein intolerance. Human Molecular Genetics, 2020, 29, 2171-2184.	2.9	15
11	The occurrence of tarsal injuries in male mice of C57BL/6N substrains in multiple international mouse facilities. PLoS ONE, 2020, 15, e0230162.	2.5	1
12	The Deep Genome Project. Genome Biology, 2020, 21, 18.	8.8	30
13	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	12.8	64
14	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	3.5	19
15	High Resolution Imaging of Mouse Embryos and Neonates with Xâ€Ray Micro omputed Tomography. Current Protocols in Mouse Biology, 2019, 9, e63.	1.2	10
16	Bi-allelic Variants in TONSL Cause SPONASTRIME Dysplasia and a Spectrum of Skeletal Dysplasia Phenotypes. American Journal of Human Genetics, 2019, 104, 422-438.	6.2	27
17	The role of FREM2 and FRAS1 in the development of congenital diaphragmatic hernia. Human Molecular Genetics, 2018, 27, 2064-2075.	2.9	16
18	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	4.4	37

MARY E DICKINSON

#	Article	IF	CITATIONS
19	Rapid and Integrative Discovery of Retina Regulatory Molecules. Cell Reports, 2018, 24, 2506-2519.	6.4	28
20	Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biology, 2018, 16, 69.	3.8	64
21	The effects of reduced hemodynamic loading on morphogenesis of the mouse embryonic heart. Developmental Biology, 2018, 442, 127-137.	2.0	13
22	The phenotypic and functional properties of mouse yolk-sac-derived embryonic macrophages. Developmental Biology, 2018, 442, 138-154.	2.0	18
23	Biallelic Variants in OTUD6B Cause an Intellectual Disability Syndrome Associated with Seizures and Dysmorphic Features. American Journal of Human Genetics, 2017, 100, 676-688.	6.2	54
24	Advanced 3D and Live Imaging Reveals Phenotypic Consequences of Disruptions in Mechanical and Genetic Mechanisms Underlying Embryonic Cardiovascular Development. Microscopy and Microanalysis, 2017, 23, 1172-1173.	0.4	0
25	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	12.8	116
26	Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives. Cell Reports, 2017, 20, 2116-2130.	6.4	53
27	Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications, 2017, 8, 15475.	12.8	200
28	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	21.4	216
29	Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. Biomedical Optics Express, 2017, 8, 4629.	2.9	16
30	Establishing Three Dimensional High Throughput Imaging Pipeline for Deep Phenotyping Mouse Embryonic Development. Microscopy and Microanalysis, 2016, 22, 1024-1025.	0.4	0
31	Lineage tracing of Sox2-expressing progenitor cells in the mouse inner ear reveals a broad contribution to non-sensory tissues and insights into the origin of the organ of Corti. Developmental Biology, 2016, 414, 72-84.	2.0	48
32	Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography. Biomedical Optics Express, 2016, 7, 2295.	2.9	23
33	Three-dimensional microCT imaging of mouse development from early post-implantation to early postnatal stages. Developmental Biology, 2016, 419, 229-236.	2.0	43
34	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	27.8	1,001
35	Lethal lung hypoplasia and vascular defects in mice with conditional <i>Foxf1</i> overexpression. Biology Open, 2016, 5, 1595-1606.	1.2	20
36	Optical coherence tomography for embryonic imaging: a review. Journal of Biomedical Optics, 2016, 21, 1.	2.6	53

MARY E DICKINSON

#	Article	IF	CITATIONS
37	Cancer-Associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma. Molecular Cancer Research, 2016, 14, 287-295.	3.4	150
38	RONIN Is an Essential Transcriptional Regulator of Genes Required for Mitochondrial Function in the Developing Retina. Cell Reports, 2016, 14, 1684-1697.	6.4	28
39	Rotational imaging optical coherence tomography for full-body mouse embryonic imaging. Journal of Biomedical Optics, 2016, 21, 1.	2.6	19
40	Biomimetic Surface Patterning Promotes Mesenchymal Stem Cell Differentiation. ACS Applied Materials & Interfaces, 2016, 8, 21883-21892.	8.0	34
41	Recapitulation and Modulation of the Cellular Architecture of a User-Chosen Cell of Interest Using Cell-Derived, Biomimetic Patterning. ACS Nano, 2015, 9, 6128-6138.	14.6	20
42	Yap and Taz play a crucial role in neural crest-derived craniofacial development. Development (Cambridge), 2015, 143, 504-15.	2.5	62
43	Ca2+ permeation and/or binding to CaV1.1 fine-tunes skeletal muscle Ca2+ signaling to sustain muscle function. Skeletal Muscle, 2015, 5, 4.	4.2	43
44	Macrophages engulf endothelial cell membrane particles preceding pupillary membrane capillary regression. Developmental Biology, 2015, 403, 30-42.	2.0	31
45	Simultaneous <i>inÂvivo</i> imaging of blood and lymphatic vessel growth in Prox1– <scp>GFP</scp> /Flk1::myr–mCherry mice. FEBS Journal, 2015, 282, 1458-1467.	4.7	24
46	Improved Angiogenesis in Response to Localized Delivery of Macrophage-Recruiting Molecules. PLoS ONE, 2015, 10, e0131643.	2.5	43
47	Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics. PLoS ONE, 2015, 10, e0137175.	2.5	6
48	Wnt-Responsive Cancer Stem Cells Are Located Close to Distorted Blood Vessels and Not in Hypoxic Regions in a p53-Null Mouse Model of Human Breast Cancer. Stem Cells Translational Medicine, 2014, 3, 857-866.	3.3	8
49	Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development (Cambridge), 2014, 141, 4406-4414.	2.5	84
50	Three-dimensional vasculature reconstruction of tumour microenvironment via local clustering and classification. Interface Focus, 2013, 3, 20130015.	3.0	7
51	Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development (Cambridge), 2013, 140, 4041-4050.	2.5	151
52	Patterning: Three-Dimensional Biomimetic Patterning in Hydrogels to Guide Cellular Organization (Adv. Mater. 17/2012). Advanced Materials, 2012, 24, 2343-2343.	21.0	0
53	Coupling Oriented Hidden Markov Random Field Model with Local Clustering for Segmenting Blood Vessels and Measuring Spatial Structures in Images of Tumor Microenvironment. , 2011, , .		4
54	Highlights of the special imaging issue. Genesis, 2011, 49, spcone-spcone.	1.6	0

4

MARY E DICKINSON

#	Article	IF	CITATIONS
55	Studying mammalian development with optical coherence tomography. , 2011, , .		0
56	Abstract P125: Sunitinib-Induced Cardiomyopathy Is Due to PDGFR-a̕Inhibition and Can Be Prevented by Cotreatment with Thalidomide. Circulation Research, 2011, 109, .	4.5	0
57	Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development (Cambridge), 2007, 134, 3317-3326.	2.5	418
58	Understanding Dynamic Events in Vasculogenesis & Remodeling in Mammalian Embryos Using Live Cell Imaging. FASEB Journal, 2007, 21, A133.	0.5	0
59	Vascular Remodeling of the Mouse Yolk Sac Requires Hydraulic Force. FASEB Journal, 2007, 21, A230.	0.5	1
60	4D, Highâ€speed Confocal Imaging Reveals Functional Changes During Cardiac Development in Vertebrate Embryos. FASEB Journal, 2007, 21, A2.	0.5	0
61	Retinoic acid regulates the specification and survival of hemogenic endothelium during murine embryogenesis. FASEB Journal, 2007, 21, A185.	0.5	0
62	Multimodal imaging of mouse development: Tools for the postgenomic era. Developmental Dynamics, 2006, 235, 2386-2400.	1.8	56
63	Using a histone yellow fluorescent protein fusion for tagging and tracking endothelial cells in ES cells and mice. Genesis, 2005, 42, 162-171.	1.6	81