Mary E Dickinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9943107/publications.pdf

Version: 2024-02-01

63 3,699
papers citations

26 52 h-index g-index

68 68 docs citations

68 times ranked 7740 citing authors

#	Article	IF	CITATIONS
1	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	27.8	1,001
2	Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development (Cambridge), 2007, 134, 3317-3326.	2.5	418
3	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	21.4	216
4	Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications, 2017, 8, 15475.	12.8	200
5	Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development (Cambridge), 2013, 140, 4041-4050.	2.5	151
6	Cancer-Associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma. Molecular Cancer Research, 2016, 14, 287-295.	3.4	150
7	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	12.8	116
8	Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development (Cambridge), 2014, 141, 4406-4414.	2.5	84
9	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
10	Using a histone yellow fluorescent protein fusion for tagging and tracking endothelial cells in ES cells and mice. Genesis, 2005, 42, 162-171.	1.6	81
11	Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biology, 2018, 16, 69.	3.8	64
12	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	12.8	64
13	Yap and Taz play a crucial role in neural crest-derived craniofacial development. Development (Cambridge), 2015, 143, 504-15.	2.5	62
14	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	21.4	60
15	Multimodal imaging of mouse development: Tools for the postgenomic era. Developmental Dynamics, 2006, 235, 2386-2400.	1.8	56
16	Biallelic Variants in OTUD6B Cause an Intellectual Disability Syndrome Associated with Seizures and Dysmorphic Features. American Journal of Human Genetics, 2017, 100, 676-688.	6.2	54
17	Optical coherence tomography for embryonic imaging: a review. Journal of Biomedical Optics, 2016, 21, 1.	2.6	53
18	Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives. Cell Reports, 2017, 20, 2116-2130.	6.4	53

#	Article	IF	CITATIONS
19	Lineage tracing of Sox2-expressing progenitor cells in the mouse inner ear reveals a broad contribution to non-sensory tissues and insights into the origin of the organ of Corti. Developmental Biology, 2016, 414, 72-84.	2.0	48
20	Ca2+ permeation and/or binding to CaV1.1 fine-tunes skeletal muscle Ca2+ signaling to sustain muscle function. Skeletal Muscle, 2015, 5, 4.	4.2	43
21	Three-dimensional microCT imaging of mouse development from early post-implantation to early postnatal stages. Developmental Biology, 2016, 419, 229-236.	2.0	43
22	Improved Angiogenesis in Response to Localized Delivery of Macrophage-Recruiting Molecules. PLoS ONE, 2015, 10, e0131643.	2.5	43
23	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	4.4	37
24	Biomimetic Surface Patterning Promotes Mesenchymal Stem Cell Differentiation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21883-21892.	8.0	34
25	Macrophages engulf endothelial cell membrane particles preceding pupillary membrane capillary regression. Developmental Biology, 2015, 403, 30-42.	2.0	31
26	The Deep Genome Project. Genome Biology, 2020, 21, 18.	8.8	30
27	RONIN Is an Essential Transcriptional Regulator of Genes Required for Mitochondrial Function in the Developing Retina. Cell Reports, 2016, 14, 1684-1697.	6.4	28
28	Rapid and Integrative Discovery of Retina Regulatory Molecules. Cell Reports, 2018, 24, 2506-2519.	6.4	28
29	Bi-allelic Variants in TONSL Cause SPONASTRIME Dysplasia and a Spectrum of Skeletal Dysplasia Phenotypes. American Journal of Human Genetics, 2019, 104, 422-438.	6.2	27
30	AAV5 delivery of CRISPR-Cas9 supports effective genome editing in mouse lung airway. Molecular Therapy, 2022, 30, 238-243.	8.2	25
31	Simultaneous <i>inÂvivo</i> imaging of blood and lymphatic vessel growth in Prox1– <scp>GFP</scp> /Flk1::myr–mCherry mice. FEBS Journal, 2015, 282, 1458-1467.	4.7	24
32	Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography. Biomedical Optics Express, 2016, 7, 2295.	2.9	23
33	Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy., 2022, 1, 157-173.		22
34	Recapitulation and Modulation of the Cellular Architecture of a User-Chosen Cell of Interest Using Cell-Derived, Biomimetic Patterning. ACS Nano, 2015, 9, 6128-6138.	14.6	20
35	Lethal lung hypoplasia and vascular defects in mice with conditional <i>Foxf1 < /i>Overexpression. Biology Open, 2016, 5, 1595-1606.</i>	1.2	20
36	Rotational imaging optical coherence tomography for full-body mouse embryonic imaging. Journal of Biomedical Optics, 2016, 21, 1.	2.6	19

#	Article	IF	Citations
37	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	3.5	19
38	The phenotypic and functional properties of mouse yolk-sac-derived embryonic macrophages. Developmental Biology, 2018, 442, 138-154.	2.0	18
39	COPB2 loss of function causes a coatopathy with osteoporosis and developmental delay. American Journal of Human Genetics, 2021, 108, 1710-1724.	6.2	18
40	Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. Biomedical Optics Express, 2017, 8, 4629.	2.9	16
41	The role of FREM2 and FRAS1 in the development of congenital diaphragmatic hernia. Human Molecular Genetics, 2018, 27, 2064-2075.	2.9	16
42	A global Slc7a7 knockout mouse model demonstrates characteristic phenotypes of human lysinuric protein intolerance. Human Molecular Genetics, 2020, 29, 2171-2184.	2.9	15
43	The effects of reduced hemodynamic loading on morphogenesis of the mouse embryonic heart. Developmental Biology, 2018, 442, 127-137.	2.0	13
44	<scp>CreLite</scp> : An optogenetically controlled Cre/ <scp>loxP</scp> system using red light. Developmental Dynamics, 2020, 249, 1394-1403.	1.8	13
45	High Resolution Imaging of Mouse Embryos and Neonates with Xâ€Ray Microâ€Computed Tomography. Current Protocols in Mouse Biology, 2019, 9, e63.	1.2	10
46	Soft windowing application to improve analysis of high-throughput phenotyping data. Bioinformatics, 2020, 36, 1492-1500.	4.1	9
47	Wnt-Responsive Cancer Stem Cells Are Located Close to Distorted Blood Vessels and Not in Hypoxic Regions in a p53-Null Mouse Model of Human Breast Cancer. Stem Cells Translational Medicine, 2014, 3, 857-866.	3.3	8
48	Three-dimensional vasculature reconstruction of tumour microenvironment via local clustering and classification. Interface Focus, 2013, 3, 20130015.	3.0	7
49	Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics. PLoS ONE, 2015, 10, e0137175.	2.5	6
50	FOXO1 represses sprouty 2 and sprouty 4 expression to promote arterial specification and vascular remodeling in the mouse yolk sac. Development (Cambridge), 2022, 149, .	2.5	5
51	Coupling Oriented Hidden Markov Random Field Model with Local Clustering for Segmenting Blood Vessels and Measuring Spatial Structures in Images of Tumor Microenvironment., 2011,,.		4
52	Identifying genetic determinants of inflammatory pain in mice using a large-scale gene-targeted screen. Pain, 2022, 163, 1139-1157.	4.2	4
53	The occurrence of tarsal injuries in male mice of C57BL/6N substrains in multiple international mouse facilities. PLoS ONE, 2020, 15, e0230162.	2.5	1
54	Vascular Remodeling of the Mouse Yolk Sac Requires Hydraulic Force. FASEB Journal, 2007, 21, A230.	0.5	1

#	Article	IF	CITATIONS
55	Highlights of the special imaging issue. Genesis, 2011, 49, spcone-spcone.	1.6	0
56	Studying mammalian development with optical coherence tomography., 2011,,.		0
57	Patterning: Three-Dimensional Biomimetic Patterning in Hydrogels to Guide Cellular Organization (Adv. Mater. 17/2012). Advanced Materials, 2012, 24, 2343-2343.	21.0	0
58	Establishing Three Dimensional High Throughput Imaging Pipeline for Deep Phenotyping Mouse Embryonic Development. Microscopy and Microanalysis, 2016, 22, 1024-1025.	0.4	0
59	Advanced 3D and Live Imaging Reveals Phenotypic Consequences of Disruptions in Mechanical and Genetic Mechanisms Underlying Embryonic Cardiovascular Development. Microscopy and Microanalysis, 2017, 23, 1172-1173.	0.4	0
60	Understanding Dynamic Events in Vasculogenesis & Remodeling in Mammalian Embryos Using Live Cell Imaging. FASEB Journal, 2007, 21, A133.	0.5	0
61	4D, Highâ€speed Confocal Imaging Reveals Functional Changes During Cardiac Development in Vertebrate Embryos. FASEB Journal, 2007, 21, A2.	0.5	0
62	Retinoic acid regulates the specification and survival of hemogenic endothelium during murine embryogenesis. FASEB Journal, 2007, 21, A185.	0.5	0
63	Abstract P125: Sunitinib-Induced Cardiomyopathy Is Due to PDGFR-all-Inhibition and Can Be Prevented by Cotreatment with Thalidomide. Circulation Research, 2011, 109, .	4.5	O