List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/994296/publications.pdf Version: 2024-02-01

		136885	149623
111	3,970	32	56
papers	citations	h-index	g-index
112	112	112	2625
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa. PLoS Pathogens, 2007, 3, e148.	2.1	335
2	Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 844-849.	3.3	238
3	The bacterial microbiome of <i>Dermacentor andersoni</i> ticks influences pathogen susceptibility. ISME Journal, 2016, 10, 1846-1855.	4.4	162
4	The genome of the heartwater agent Ehrlichia ruminantium contains multiple tandem repeats of actively variable copy number. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 838-843.	3.3	158
5	Polymorphisms in the prion precursor functional gene but not the pseudogene are associated with susceptibility to chronic wasting disease in white-tailed deer. Journal of General Virology, 2004, 85, 1339-1346.	1.3	152
6	Engineering of obligate intracellular bacteria: progress, challenges and paradigms. Nature Reviews Microbiology, 2017, 15, 544-558.	13.6	144
7	Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion. Molecular Microbiology, 2002, 43, 1151-1159.	1.2	124
8	Phylogenomics Reveals a Diverse <i>Rickettsiales</i> Type IV Secretion System. Infection and Immunity, 2010, 78, 1809-1823.	1.0	101
9	Identification of Novel Antigenic Proteins in a Complex Anaplasma marginale Outer Membrane Immunogen by Mass Spectrometry and Genomic Mapping. Infection and Immunity, 2005, 73, 8109-8118.	1.0	92
10	Superinfection as a driver of genomic diversification in antigenically variant pathogens. Proceedings of the United States of America, 2008, 105, 2123-2127.	3.3	81
11	Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. International Journal for Parasitology, 2014, 44, 1029-1037.	1.3	75
12	Composition of the Surface Proteome of <i>Anaplasma marginale</i> and Its Role in Protective Immunity Induced by Outer Membrane Immunization. Infection and Immunity, 2008, 76, 2219-2226.	1.0	70
13	The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni. Parasites and Vectors, 2015, 8, 632.	1.0	68
14	Stochastic Transmission of Multiple Genotypically Distinct Anaplasma marginale Strains in a Herd with High Prevalence of Anaplasma Infection. Journal of Clinical Microbiology, 2004, 42, 5381-5384.	1.8	67
15	Immunogenicity of Anaplasma marginale Type IV Secretion System Proteins in a Protective Outer Membrane Vaccine. Infection and Immunity, 2007, 75, 2333-2342.	1.0	62
16	Gene conversion is a convergent strategy for pathogen antigenic variation. Trends in Parasitology, 2007, 23, 408-413.	1.5	60
17	Conservation in the face of diversity: multistrain analysis of an intracellular bacterium. BMC Genomics, 2009, 10, 16.	1.2	55
18	Conservation of a gene conversion mechanism in two distantly related paralogues of Anaplasma marginale. Molecular Microbiology, 2003, 47, 633-643.	1.2	53

#	Article	IF	CITATIONS
19	Identification of Anaplasma marginale Type IV Secretion System Effector Proteins. PLoS ONE, 2011, 6, e27724.	1.1	53
20	Structural basis for segmental gene conversion in generation of Anaplasma marginale outer membrane protein variants. Molecular Microbiology, 2005, 57, 212-221.	1.2	52
21	Temporal characterisation of the organ-specific Rhipicephalus microplus transcriptional response to Anaplasma marginale infection. International Journal for Parasitology, 2011, 41, 851-860.	1.3	51
22	Distinctly different msp2 pseudogene repertoires in Anaplasma marginale strains that are capable of superinfection. Gene, 2005, 361, 127-132.	1.0	50
23	Differential Expression and Sequence Conservation of the Anaplasma marginale msp2 Gene Superfamily Outer Membrane Proteins. Infection and Immunity, 2006, 74, 3471-3479.	1.0	49
24	Expression of Anaplasma marginale Major Surface Protein 2 Operon-Associated Proteins during Mammalian and Arthropod Infection. Infection and Immunity, 2002, 70, 6005-6012.	1.0	48
25	A processed pseudogene contributes to apparent mule deer prion gene heterogeneity. Gene, 2004, 326, 167-173.	1.0	46
26	Identification of functional promoters in the msp2 expression loci of Anaplasma marginale and Anaplasma phagocytophilum. Gene, 2005, 353, 89-97.	1.0	46
27	Complete Genome Sequence of <i>Anaplasma marginale</i> subsp. <i>centrale</i> . Journal of Bacteriology, 2010, 192, 379-380.	1.0	45
28	Characterization of a major outer membrane protein multigene family in Ehrlichia ruminantium. Gene, 2004, 330, 159-168.	1.0	43
29	Simultaneous Variation of the Immunodominant Outer Membrane Proteins, MSP2 and MSP3, during Anaplasma marginale Persistence In Vivo. Infection and Immunity, 2003, 71, 6627-6632.	1.0	41
30	<i>Anaplasma marginale</i> Type IV Secretion System Proteins VirB2, VirB7, VirB11, and VirD4 Are Immunogenic Components of a Protective Bacterial Membrane Vaccine. Infection and Immunity, 2010, 78, 1314-1325.	1.0	41
31	The Hypervariable Region ofAnaplasma marginaleMajor Surface Protein 2 (MSP2) Contains Multiple Immunodominant CD4+T Lymphocyte Epitopes That Elicit Variant-Specific Proliferative and IFN-Î ³ Responses in MSP2 Vaccinates. Journal of Immunology, 2003, 170, 3790-3798.	0.4	40
32	Gut transcriptome of replete adult female cattle ticks, Rhipicephalus (Boophilus) microplus, feeding upon a Babesia bovis-infected bovine host. Parasitology Research, 2013, 112, 3075-3090.	0.6	37
33	Genomic and proteomic approaches to vaccine candidate identification forAnaplasma marginale. Expert Review of Vaccines, 2006, 5, 95-101.	2.0	35
34	Expansion of Variant Diversity Associated with a High Prevalence of Pathogen Strain Superinfection under Conditions of Natural Transmission. Infection and Immunity, 2012, 80, 2354-2360.	1.0	35
35	Characterization of a Novel Microcin That Kills Enterohemorrhagic Escherichia coli O157:H7 and O26. Applied and Environmental Microbiology, 2012, 78, 6592-6599.	1.4	35
36	Prediction of T4SS Effector Proteins for Anaplasma phagocytophilum Using OPT4e, A New Software Tool. Frontiers in Microbiology, 2019, 10, 1391.	1.5	32

#	Article	IF	CITATIONS
37	Comparison of ovine herpesvirus 2 genomes isolated from domestic sheep (Ovis aries) and a clinically affected cow (Bos bovis). Journal of General Virology, 2007, 88, 40-45.	1.3	31
38	Expression of Major Surface Protein 2 Variants with Conserved T-Cell Epitopes in Anaplasma centrale Vaccinates. Infection and Immunity, 2002, 70, 642-648.	1.0	30
39	RepeatAnalyzer: a tool for analysing and managing short-sequence repeat data. BMC Genomics, 2016, 17, 422.	1.2	30
40	Analysis of Babesia bovis infection-induced gene expression changes in larvae from the cattle tick, Rhipicephalus (Boophilus) microplus. Parasites and Vectors, 2012, 5, 162.	1.0	29
41	Genome-wide screening and identification of antigens for rickettsial vaccine development: 1. FEMS Immunology and Medical Microbiology, 2012, 64, 115-119.	2.7	29
42	Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks. Microbiome, 2017, 5, 133.	4.9	27
43	Maintenance of Antibody to Pathogen Epitopes Generated by Segmental Gene Conversion Is Highly Dynamic during Long-Term Persistent Infection. Infection and Immunity, 2007, 75, 5185-5190.	1.0	26
44	<i>Anaplasma marginale</i> Infection with Persistent High-Load Bacteremia Induces a Dysfunctional Memory CD4 ⁺ T Lymphocyte Response but Sustained High IgG Titers. Vaccine Journal, 2010, 17, 1881-1890.	3.2	26
45	Identification of <i>Anaplasma marginale</i> Proteins Specifically Upregulated during Colonization of the Tick Vector. Infection and Immunity, 2010, 78, 3047-3052.	1.0	26
46	Identification of <i>Anaplasma marginale</i> Outer Membrane Protein Antigens Conserved between <i>A. marginale</i> Sensu Stricto Strains and the Live <i>A. marginale</i> subsp. <i>centrale</i> Vaccine. Infection and Immunity, 2011, 79, 1311-1318.	1.0	26
47	Generation of Antigenic Variants via Gene Conversion: Evidence for Recombination Fitness Selection at the Locus Level in <i>Anaplasma marginale</i> . Infection and Immunity, 2009, 77, 3181-3187.	1.0	24
48	Stability and Tick Transmission Phenotype of <i>gfp</i> -Transformed <i>Anaplasma marginale</i> through a Complete <i>In Vivo</i> Infection Cycle. Applied and Environmental Microbiology, 2011, 77, 330-334.	1.4	24
49	Antigenic variation and transmission fitness as drivers of bacterial strain structure. Cellular Microbiology, 2013, 15, 1969-1975.	1.1	24
50	Expression Patterns of Anaplasma marginale msp2 Variants Change in Response to Growth in Cattle, and Tick Cells versus Mammalian Cells. PLoS ONE, 2012, 7, e36012.	1.1	24
51	Selection for Simple Major Surface Protein 2 Variants during Anaplasma marginale Transmission to Immunologically Nail^ve Animals. Infection and Immunity, 2007, 75, 1502-1506.	1.0	23
52	Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein. PLoS ONE, 2015, 10, e0129309.	1.1	23
53	Characterization of Anaplasma marginale subsp. centrale Strains by Use of msp1aS Genotyping Reveals a Wildlife Reservoir. Journal of Clinical Microbiology, 2016, 54, 2503-2512.	1.8	23
54	An optimal set of features for predicting type IV secretion system effector proteins for a subset of species based on a multi-level feature selection approach. PLoS ONE, 2018, 13, e0197041.	1.1	23

#	Article	IF	CITATIONS
55	Comparative analysis of gene expression between Babesia bovis blood stages and kinetes allowed by improved genome annotation. International Journal for Parasitology, 2021, 51, 123-136.	1.3	23
56	Anaplasma phagocytophilum and Other Anaplasma spp. in Various Hosts in the Mnisi Community, Mpumalanga Province, South Africa. Microorganisms, 2020, 8, 1812.	1.6	22
57	Protective immunity induced by immunization with a live, cultured Anaplasma marginale strain. Vaccine, 2013, 31, 3617-3622.	1.7	21
58	Preparation of Ehrlichia ruminantium challenge material for quantifiable and reproducible challenge in mice and sheep. Veterinary Parasitology, 2003, 112, 63-73.	0.7	20
59	The Babesia bovis Merozoite Surface Antigen 1 Hypervariable Region Induces Surface-Reactive Antibodies That Block Merozoite Invasion. Infection and Immunity, 2006, 74, 3663-3667.	1.0	19
60	Tick-Borne Transmission of Two Genetically Distinct <i>Anaplasma marginale</i> Strains following Superinfection of the Mammalian Reservoir Host. Infection and Immunity, 2008, 76, 4066-4070.	1.0	19
61	Independence of <i>Anaplasma marginale</i> Strains with High and Low Transmission Efficiencies in the Tick Vector following Simultaneous Acquisition by Feeding on a Superinfected Mammalian Reservoir Host. Infection and Immunity, 2009, 77, 1459-1464.	1.0	19
62	Expression and strain variation of the novel "small open reading frame―(smorf) multigene family in Babesia bovis. International Journal for Parasitology, 2012, 42, 131-138.	1.3	19
63	Genetic Diversity of Tick-Borne Rickettsial Pathogens; Insights Gained from Distant Strains. Pathogens, 2014, 3, 57-72.	1.2	19
64	Reduced Infectivity in Cattle for an Outer Membrane Protein Mutant of Anaplasma marginale. Applied and Environmental Microbiology, 2015, 81, 2206-2214.	1.4	19
65	Detection and Characterisation of Anaplasma marginale and A. centrale in South Africa. Veterinary Sciences, 2018, 5, 26.	0.6	19
66	Identification of a Novel Anaplasma marginale Appendage-Associated Protein That Localizes with Actin Filaments during Intraerythrocytic Infection. Infection and Immunity, 2004, 72, 7257-7264.	1.0	18
67	The immunization-induced antibody response to the Anaplasma marginale major surface protein 2 and its association with protective immunity. Vaccine, 2010, 28, 3741-3747.	1.7	18
68	Using an optimal set of features with a machine learning-based approach to predict effector proteins for Legionella pneumophila. PLoS ONE, 2019, 14, e0202312.	1.1	18
69	Co-infections with multiple genotypes of Anaplasma marginale in cattle indicate pathogen diversity. Parasites and Vectors, 2018, 11, 5.	1.0	17
70	The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples. Microorganisms, 2022, 10, 605.	1.6	17
71	Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale. Annals of the New York Academy of Sciences, 2006, 1078, 15-25.	1.8	16
72	Comparative genomics and transcriptomics of trait-gene association. BMC Genomics, 2012, 13, 669.	1.2	16

#	Article	IF	CITATIONS
73	Development of Improved Vaccines for Heartwater. Annals of the New York Academy of Sciences, 2003, 990, 474-484.	1.8	15
74	Analysis of the Anaplasma marginale Major Surface Protein 1 Complex Protein Composition by Tandem Mass Spectrometry. Journal of Bacteriology, 2006, 188, 4983-4991.	1.0	15
75	Conservation of the unique rickettsial rRNA gene arrangement in Anaplasma International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 1405-1409.	0.8	14
76	Characterization of the Anaplasma marginale msp2 locus and its synteny with the omp1/p30 loci of Ehrlichia chaffeensis and E. canis. Gene, 2004, 325, 115-121.	1.0	13
77	Transcriptional pathways associated with the slow growth phenotype of transformed Anaplasma marginale. BMC Genomics, 2013, 14, 272.	1.2	13
78	The Anaplasma ovis genome reveals a high proportion of pseudogenes. BMC Genomics, 2019, 20, 69.	1.2	13
79	Transcriptome dataset of Babesia bovis life stages within vertebrate and invertebrate hosts. Data in Brief, 2020, 33, 106533.	0.5	13
80	Evidence confirming the phylogenetic position of Anaplasma centrale (ex Theiler 1911) Ristic and Kreier 1984. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 2682-2691.	0.8	13
81	CD4 + T Lymphocytes from Anaplasma marginale Major Surface Protein 2 (MSP2) Vaccinees Recognize Naturally Processed Epitopes Conserved in MSP3. Infection and Immunity, 2004, 72, 3688-3692.	1.0	12
82	Global transcriptional analysis reveals surface remodeling of Anaplasma marginale in the tick vector. Parasites and Vectors, 2014, 7, 193.	1.0	11
83	Comparative genomics reveals multiple pathways to mutualism for tick-borne pathogens. BMC Genomics, 2016, 17, 481.	1.2	11
84	Quantitative analysis of Anaplasma marginale acquisition and transmission by Dermacentor andersoni fed in vitro. Scientific Reports, 2020, 10, 470.	1.6	11
85	Comparison of three nucleic acid-based tests for detecting <i>Anaplasma marginale</i> and <i>Anaplasma centrale</i> in cattle. Onderstepoort Journal of Veterinary Research, 2017, 84, e1-e9.	0.6	10
86	A Systematic Approach to Bacterial Phylogeny Using Order Level Sampling and Identification of HGT Using Network Science. Microorganisms, 2020, 8, 312.	1.6	9
87	Expression of Anaplasma marginale Ankyrin Repeat-Containing Proteins during Infection of the Mammalian Host and Tick Vector. Infection and Immunity, 2011, 79, 2847-2855.	1.0	8
88	Anaplasma. , 2009, , 85-116.		8
89	Association of Pathogen Strain-Specific Gene Transcription and Transmission Efficiency Phenotype of <i>Anaplasma marginale</i> . Infection and Immunity, 2010, 78, 2446-2453.	1.0	7
90	Superinfection Exclusion of the Ruminant Pathogen Anaplasma marginale in Its Tick Vector Is Dependent on the Time between Exposures to the Strains. Applied and Environmental Microbiology, 2016, 82, 3217-3224.	1.4	7

#	Article	IF	CITATIONS
91	Biostatistical prediction of genes essential for growth of <i>Anaplasma phagocytophilum</i> in a human promyelocytic cell line using a random transposon mutant library. Pathogens and Disease, 2021, 79, .	0.8	7
92	Whole Proteome Clustering of 2,307 Proteobacterial Genomes Reveals Conserved Proteins and Significant Annotation Issues. Frontiers in Microbiology, 2019, 10, 383.	1.5	6
93	A conserved coccidian gene is involved in Toxoplasma sensitivity to the anti-apicomplexan compound, tartrolon E. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 1-7.	1.4	6
94	Automated Confirmation of Protein Annotation Using NLP and the UniProtKB Database. Applied Sciences (Switzerland), 2021, 11, 24.	1.3	6
95	Succinate dehydrogenase gene arrangement and expression in Anaplasma phagocytophilum. Gene, 2008, 414, 41-48.	1.0	5
96	Identification of Multilocus Genetic Heterogeneity in Anaplasma marginale subsp. centrale and Its Restriction following Tick-Borne Transmission. Infection and Immunity, 2013, 81, 1852-1858.	1.0	5
97	Identification of Anaplasma ovis appendage-associated protein (AAAP) for development of an indirect ELISA and its application. Parasites and Vectors, 2017, 10, 359.	1.0	5
98	<i>Anaplasma ovis</i> as the suspected cause of mortality in a neonatal elk calf. Journal of Veterinary Diagnostic Investigation, 2019, 31, 267-270.	0.5	5
99	Predicted iron metabolism genes in hard ticks and their response to iron reduction in Dermacentor andersoni cells. Ticks and Tick-borne Diseases, 2021, 12, 101584.	1.1	5
100	Growth of Mannheimia haemolytica: Inhibitory agents and putative mechanism of inhibition. Veterinary Microbiology, 2014, 174, 155-162.	0.8	4
101	Segmental Variation in a Duplicated msp2 Pseudogene Generates Anaplasma marginale Antigenic Variants. Infection and Immunity, 2019, 87, .	1.0	4
102	Both co-infection and superinfection drive complex Anaplasma marginale strain structure in a natural transmission setting. Infection and Immunity, 2021, 89, e0016621.	1.0	4
103	A nearest-neighbors network model for sequence data reveals new insight into genotype distribution of a pathogen. BMC Bioinformatics, 2018, 19, 475.	1.2	3
104	Anaplasma marginale outer membrane protein vaccine candidates are conserved in North American and South African strains. Ticks and Tick-borne Diseases, 2020, 11, 101444.	1.1	3
105	Transcriptional Profiling of a Cross-Protective Salmonella enterica serovar Typhimurium UK-1 dam Mutant Identifies a Set of Genes More Transcriptionally Active Compared to Wild-Type, and Stably Transcribed across Biologically Relevant Microenvironments. Pathogens, 2014, 3, 417-436.	1.2	2
106	Genome Sequence of <i>Bibersteinia trehalosi</i> Strain Y31 Isolated from the Pneumonic Lung of a Bighorn Sheep. Genome Announcements, 2016, 4, .	0.8	2
107	Identification of Rhipicephalus microplus Genes That Modulate the Infection Rate of the Rickettsia Anaplasma marginale. PLoS ONE, 2014, 9, e91062.	1.1	1
108	Dynamics of repeat-associated plasticity in the aaap gene family in Anaplasma marginale. Gene: X, 2019, 721, 100010.	2.3	1

#	Article	IF	CITATIONS
109	Iron Reduction in Dermacentor andersoni Tick Cells Inhibits Anaplasma marginale Replication. International Journal of Molecular Sciences, 2022, 23, 3941.	1.8	1
110	PASS: Protein Annotation Surveillance Site for Protein Annotation Using Homologous Clusters, NLP, and Sequence Similarity Networks. Frontiers in Bioinformatics, 2021, 1, .	1.0	0
111	Persistence and Antigenic Variation. , 0, , 366-390.		0