Olga I Grabelnych

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9940713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external) Tj ETQq1 Biochemistry (Moscow), 2014, 79, 506-519.	1 0.784314 rgB ⁻ 0.7	T /Overlock 39
2	Evaluation of biochemical responses in Palearctic and Lake Baikal endemic amphipod species exposed to CdCl2. Ecotoxicology and Environmental Safety, 2008, 70, 99-105.	2.9	25
3	Light regulation of mitochondrial alternative oxidase pathway during greening of etiolated wheat seedlings. Journal of Plant Physiology, 2015, 174, 75-84.	1.6	25
4	Expression profiles of genes for mitochondrial respiratory energy-dissipating systems and antioxidant enzymes in wheat leaves during de-etiolation. Journal of Plant Physiology, 2017, 215, 110-121.	1.6	22
5	Stress-induced protein CSP 310: a third uncoupling system in plants. Planta, 2002, 215, 279-286.	1.6	12
6	Difference between the temperature of non-hardened and hardened winter wheat seedling shoots during cold stress. Journal of Thermal Biology, 2003, 28, 235-244.	1.1	12
7	The distribution of electron transport between the main cytochrome and alternative pathways in plant mitochondria during short-term cold stress and cold hardening. Journal of Thermal Biology, 2004, 29, 165-175.	1.1	12
8	Winter wheat cells subjected to freezing temperature undergo death process with features of programmed cell death. Protoplasma, 2014, 251, 615-623.	1.0	12
9	Physiological effects of triazole fungicides in plants. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2019, 3, 461-476.	0.1	12
10	The Association of Plant Stress Uncoupling Protein CSP 310 with Winter Wheat Mitochondria in vitro during Exposure to Low Temperature. Journal of Plant Physiology, 2000, 156, 805-807.	1.6	11
11	Mitochondrial alternative cyanide-resistant oxidase is involved in an increase of heat stress tolerance in spring wheat. Journal of Plant Physiology, 2018, 231, 310-317.	1.6	11
12	Salicylhydroxamic Acid-Resistant and Sensitive Components of Respiration in Chilling-Sensitive Plants Subjected to a Daily Short-Term Temperature Drop. Russian Journal of Plant Physiology, 2020, 67, 60-67.	0.5	11
13	Plant stress-related uncoupling protein CSP 310 caused lipid peroxidation in winter wheat mitochondria under chilling stress. Journal of Thermal Biology, 2000, 25, 323-327.	1.1	10
14	The comparison of uncoupling activity of constituently synthesised and stress-induced forms of winter rye stress uncoupling protein CSP 310. Journal of Thermal Biology, 2001, 26, 95-101.	1.1	10
15	Title is missing!. Russian Journal of Plant Physiology, 2001, 48, 798-803.	0.5	10
16	Screening of mitochondrial proteins in winter rye, winter wheat, elymus and maize with an immunochemical affinity to the stress protein 310 kD and their intramitochondrial localization in winter wheat. Journal of Thermal Biology, 2000, 25, 245-249.	1.1	9
17	Cold-Shock 310-kD Protein Uncouples Oxidative Phosphorylation in Plant Mitochondria. Russian Journal of Plant Physiology, 2001, 48, 89-94.	0.5	9
18	Influence of CSP 310 and CSP 310-like proteins from cereals on mitochondrial energetic activity and lipid peroxidation in vitro and in vivo. BMC Plant Biology, 2001, 1, 1.	1.6	9

#	Article	IF	CITATIONS
19	The Effect of Surface Barrier Discharge Plasma Products on the Germination of Cereals. Technical Physics Letters, 2019, 45, 16-19.	0.2	9
20	Complex I of winter wheat mitochondria respiratory chain is the most sensitive to uncoupling action of plant stress-related uncoupling protein CSP 310. Journal of Thermal Biology, 2001, 26, 47-53.	1.1	8
21	AN INFLUENCE OF ANTISERUM AGAINST WINTER WHEAT STRESS UNCOUPLING PROTEIN, CSP 310, ON ENERGETIC ACTIVITY OF SOME PLANT SPECIES MITOCHONDRIA. Journal of Immunoassay and Immunochemistry, 2001, 22, 75-83.	0.5	7
22	AN INFLUENCE OF STRESS PROTEIN CSP 310 AND ANTISERUM AGAINST THIS PROTEIN ON LIPID PEROXIDATION IN CEREAL MITOCHONDRIA. Journal of Immunoassay and Immunochemistry, 2001, 22, 113-126.	0.5	7
23	Mechanisms and functions of nonphosphorylating electron transport in respiratory chain of plant mitochondria. Russian Journal of Plant Physiology, 2006, 53, 418-429.	0.5	7
24	The role of different plant seedling shoots mitochondrial uncoupling systems in thermogenesis during low-temperature stress. Journal of Thermal Biology, 2003, 28, 571-580.	1.1	6
25	Impossible mechanisms of germatranol influence on the thermal stability of wheat germs. Applied Biochemistry and Microbiology, 2016, 52, 429-434.	0.3	6
26	STRESS PROTEIN CSP 310 CAUSES OXIDATION AND PHOSPHORYLATION UNCOUPLING DURING LOW-TEMPERATURE STRESS ONLY IN CEREAL BUT NOT IN DYCOTYLEDON MITOCHONDRIA. Journal of Immunoassay and Immunochemistry, 2001, 22, 275-287.	0.5	5
27	Non-phosphorylating bypass of the plant mitochondrial respiratory chain by stress protein CSPiį½2310. Planta, 2005, 221, 113-122.	1.6	5
28	The role of free fatty acids in mitochondrial energetic metabolism in winter wheat seedlings. Russian Journal of Plant Physiology, 2009, 56, 332-342.	0.5	5
29	An effect of water-soluble proteins of fungi differed in frost-hardy on the energetic activity of isolated plant mitochondria. Journal of Thermal Biology, 2002, 27, 239-244.	1.1	4
30	Title is missing!. Russian Journal of Plant Physiology, 2001, 48, 204-209.	0.5	3
31	The Effect of CSP310 on Lipid Peroxidation and Respiratory Activity in Winter Wheat Mitochondria. Russian Journal of Plant Physiology, 2002, 49, 628-634.	0.5	3
32	Antioxidant function of alternative oxidase in mitochondria of winter wheat during cold hardening. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2011, 5, 249-257.	0.3	3
33	Plant stress uncoupling protein CSP 310 caused thermogenesis in winter wheat mitochondria in vitro. Journal of Plant Physiology, 2001, 158, 807-810.	1.6	2
34	Title is missing!. Russian Journal of Plant Physiology, 2003, 50, 224-231.	0.5	2
35	The cyclosporine-A-sensitive mitochondrial permeability transition pore in winter wheat at a low temperature and under oxidative stress. Doklady Biological Sciences, 2007, 417, 446-448.	0.2	2
36	Heat shock proteins in the mechanisms of stress adaptation in Baikal amphipods and Palaearctic Gammarus lacustris Sars II. Small HSP family. Contemporary Problems of Ecology, 2010, 3, 449-456.	0.3	2

Olga I Grabelnych

#	Article	IF	CITATIONS
37	Comparison of Presowing Wheat Treatments by Low-Temperature Plasma, Electric Field, Cold Hardening, and Action of Tebuconazole-Based Disinfectant. Applied Sciences (Switzerland), 2022, 12, 6447.	1.3	2
38	The search for proteins with immunochemical affinity to plant stress proteins at cold-adapted endemic Baikal fishes. Journal of Thermal Biology, 2001, 26, 209-214.	1.1	1
39	Influence of Stress Protein CSP 310 and Antiserum Against This Protein on Oxygen Uptake, Lipid Peroxidation, and Temperature of Winter Wheat Seedling Shoots During Cold Stress. Journal of Immunoassay and Immunochemistry, 2003, 24, 41-55.	0.5	1
40	Frequency-dependent transition from homogeneous to constricted shape in surface dielectric barrier discharge and its impact on biological target. Journal of Physics: Conference Series, 2018, 946, 012140.	0.3	1
41	Effects of different mitochondrial thermogenic systems on the temperature of winter wheat seedlings exposed to cold shock. Doklady Biological Sciences, 2001, 378, 262-264.	0.2	0
42	Nature of the ligand bound to uncoupling CSP310 protein. Russian Journal of Plant Physiology, 2005, 52, 189-193.	0.5	0
43	Functioning of a CSP310 stress protein is related to the shunting of electron transfer along the respiratory chain of winter wheat mitochondria. Russian Journal of Plant Physiology, 2006, 53, 332-339.	0.5	0
44	Winter wheat mitochondria functioning in vitro in the presence of calcium ions and stress uncoupling CSP310 protein. Russian Journal of Plant Physiology, 2006, 53, 340-345.	0.5	0
45	Heat shock proteins in the mechanisms of stress adaptation in Baikal amphipods and palearctic Gammarus lacustris Sars. I. HSP70 family. Contemporary Problems of Ecology, 2010, 3, 41-49.	0.3	0