Hongzhu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9939911/publications.pdf

Version: 2024-02-01

516681 580810 26 624 16 25 h-index citations g-index papers 28 28 28 1389 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DR1 activation promotes vascular smooth muscle cell apoptosis via upâ€regulation of CSE/H ₂ S pathway in diabetic mice. FASEB Journal, 2022, 36, e22070.	0.5	9
2	Dopamine 1 receptors inhibit apoptosis via activating CSE/H ₂ S pathway in high glucoseâ€induced vascular endothelial cells. Cell Biology International, 2022, , .	3.0	4
3	Spermine Protects Cardiomyocytes from High Glucose-Induced Energy Disturbance by Targeting the CaSR-gp78-Ubiquitin Proteasome System. Cardiovascular Drugs and Therapy, 2021, 35, 73-85.	2.6	14
4	The DR1â€'CSE/H ₂ S system inhibits renal fibrosis by downregulating the ERK1/2 signaling pathway in diabetic mice. International Journal of Molecular Medicine, 2021, 49, .	4.0	6
5	Exogenous spermine attenuates rat diabetic cardiomyopathy via suppressing ROS-p53 mediated downregulation of calcium-sensitive receptor. Redox Biology, 2020, 32, 101514.	9.0	36
6	Calciumâ€'sensing receptor promotes high glucoseâ€'induced myocardial fibrosis via upregulation of the TGFâ€'β1/Smads pathway in cardiac fibroblasts. Molecular Medicine Reports, 2019, 20, 1093-1102.	2.4	16
7	Calhex ₂₃₁ Alleviates High Glucose-Induced Myocardial Fibrosis <i>via</i> Inhibiting Itch-Ubiquitin Proteasome Pathway <i>in Vitro</i> . Biological and Pharmaceutical Bulletin, 2019, 42, 1337-1344.	1.4	9
8	H2S restores the cardioprotective effects of ischemic post-conditioning by upregulating HB-EGF/EGFR signaling. Aging, 2019, 11, 1745-1758.	3.1	18
9	DR1 activation reduces the proliferation of vascular smooth muscle cells by JNK/c-Jun dependent increasing of Prx3. Molecular and Cellular Biochemistry, 2018, 440, 157-165.	3.1	4
10	The interaction of estrogen and CSE/H ₂ S pathway in the development of atherosclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H406-H414.	3.2	42
11	The effect and mechanism of dopamine D1 receptors on the proliferation of osteosarcoma cells. Molecular and Cellular Biochemistry, 2017, 430, 31-36.	3.1	15
12	Calcium sensing receptor protects high glucose-induced energy metabolism disorder via blocking gp78-ubiquitin proteasome pathway. Cell Death and Disease, 2017, 8, e2799-e2799.	6.3	25
13	Exogenous H2S restores ischemic post-conditioning-induced cardioprotection through inhibiting endoplasmic reticulum stress in the aged cardiomyocytes. Cell and Bioscience, 2017, 7, 67.	4.8	17
14	Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. International Journal of Cardiology, 2016, 220, 681-692.	1.7	68
15	Exogenous spermine inhibits hypoxia/ischemia-induced myocardial apoptosis via regulation of mitochondrial permeability transition pore and associated pathways. Experimental Biology and Medicine, 2016, 241, 1505-1515.	2.4	23
16	Exogenous H2S contributes to recovery of ischemic post-conditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-ÎB and JAK2-STAT3 pathways in the aging cardiomyocytes. Cell and Bioscience, 2016, 6, 26.	4.8	41
17	Inhibition of hydrogen sulfide on the proliferation of vascular smooth muscle cells involved in the modulation of calcium sensing receptor in high homocysteine. Experimental Cell Research, 2016, 347, 184-191.	2.6	27
18	Suppression of calcium-sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Molecular Medicine Reports, 2016, 14, 111-120.	2.4	26

#	Article	IF	CITATION
19	Dopamine D2 receptors contribute to cardioprotection of ischemic post-conditioning via activating autophagy in isolated rat hearts. International Journal of Cardiology, 2016, 203, 837-839.	1.7	18
20	H ₂ S restores the cardioprotection from ischemic postâ€conditioning in isolated aged rat hearts. Cell Biology International, 2015, 39, 1173-1176.	3.0	11
21	Interaction of Hydrogen Sulfide with Oxygen Sensing under Hypoxia. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-9.	4.0	18
22	Mediation of exogenous hydrogen sulfide in recovery of ischemic post-conditioning-induced cardioprotection via down-regulating oxidative stress and up-regulating PI3K/Akt/GSK-3 \hat{l}^2 pathway in isolated aging rat hearts. Cell and Bioscience, 2015, 5, 11.	4.8	51
23	Exogenous hydrogen sulfide restores cardioprotection of ischemic post-conditioning via inhibition of mPTP opening in the aging cardiomyocytes. Cell and Bioscience, 2015, 5, 43.	4.8	37
24	Exercise Training Preserves Ischemic Preconditioning in Aged Rat Hearts by Restoring the Myocardial Polyamine Pool. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-14.	4.0	33
25	Mediation of dopamine D2 receptors activation in post-conditioning-attenuated cardiomyocyte apoptosis. Experimental Cell Research, 2014, 323, 118-130.	2.6	26
26	Interaction of Hydrogen Sulfide and Estrogen on the Proliferation of Vascular Smooth Muscle Cells. PLoS ONE, 2012, 7, e41614.	2.5	30