
Jin-Quan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/993938/publications.pdf Version: 2024-02-01

IIN-OLIAN WANC

#	Article	IF	CITATIONS
1	Fixation of CO ₂ into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chemistry, 2015, 17, 108-122.	9.0	387
2	Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chemistry, 2012, 14, 654.	9.0	314
3	Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catalysis Science and Technology, 2014, 4, 1556.	4.1	222
4	Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. Journal of Molecular Catalysis A, 2006, 249, 143-148.	4.8	221
5	Efficient Acid–Base Bifunctional Catalysts for the Fixation of CO ₂ with Epoxides under Metal―and Solventâ€Free Conditions. ChemSusChem, 2011, 4, 502-507.	6.8	221
6	Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catalysis Communications, 2007, 8, 167-172.	3.3	196
7	Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides. Catalysis Science and Technology, 2012, 2, 1480.	4.1	192
8	Bifunctional Metalâ€6alen Complexes as Efficient Catalysts for the Fixation of CO ₂ with Epoxides under Solventâ€Free Conditions. ChemSusChem, 2008, 1, 236-241.	6.8	180
9	Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chemistry, 2014, 16, 3071.	9.0	180
10	SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides. Catalysis Today, 2013, 200, 117-124.	4.4	168
11	Boronic Acids as Hydrogen Bond Donor Catalysts for Efficient Conversion of CO ₂ into Organic Carbonate in Water. ACS Catalysis, 2016, 6, 4871-4876.	11.2	163
12	Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO ₂ capture and conversion. Chemical Communications, 2015, 51, 12076-12079.	4.1	157
13	Ionic liquid clusters: structure, formation mechanism, and effect on the behavior of ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 5893-5906.	2.8	155
14	A Novel Dual Amino-Functionalized Cation-Tethered Ionic Liquid for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 5835-5841.	3.7	145
15	Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates. Physical Chemistry Chemical Physics, 2012, 14, 11021.	2.8	129
16	A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions. Tetrahedron Letters, 2006, 47, 1271-1275.	1.4	128
17	Phosphonium salt incorporated hypercrosslinked porous polymers for CO ₂ capture and conversion. Chemical Communications, 2015, 51, 15708-15711.	4.1	128
18	Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO2catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chemistry, 2007, 9, 566-571.	9.0	127

JIN-QUAN WANG

#	Article	IF	CITATIONS
19	Redox Active Metal– and Covalent Organic Frameworks for Energy Storage: Balancing Porosity and Electrical Conductivity. Chemistry - A European Journal, 2017, 23, 16419-16431.	3.3	121
20	Catalytic fixation of CO ₂ to cyclic carbonates by phosphonium chlorides immobilized on fluorous polymer. Green Chemistry, 2013, 15, 110-115.	9.0	114
21	Efficient fixation of CO ₂ into organic carbonates catalyzed by 2-hydroxymethyl-functionalized ionic liquids. RSC Advances, 2013, 4, 2360-2367.	3.6	107
22	Hexaazatrinaphthylene-Based Porous Organic Polymers as Organic Cathode Materials for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 1772-1779.	6.7	106
23	TEMPO and Carboxylic Acid Functionalized Imidazolium Salts/Sodium Nitrite: An Efficient, Reusable, Transition Metalâ€Free Catalytic System for Aerobic Oxidation of Alcohols. Advanced Synthesis and Catalysis, 2009, 351, 2209-2216.	4.3	103
24	Synthesis of bimagnetic ionic liquid and application for selective aerobic oxidation of aromatic alcohols under mild conditions. Chemical Communications, 2011, 47, 2697.	4.1	100
25	Carbon dioxide chemistry: Examples and challenges in chemical utilization of carbon dioxide. Pure and Applied Chemistry, 2009, 81, 2069-2080.	1.9	92
26	Functionalized dicyandiamide–formaldehyde polymers as efficient heterogeneous catalysts for conversion of CO ₂ into organic carbonates. Green Chemistry, 2014, 16, 2771-2778.	9.0	90
27	Supercritical carbon dioxide and poly(ethylene glycol): an environmentally benign biphasic solvent system for aerobic oxidation of styrene. Green Chemistry, 2007, 9, 882.	9.0	87
28	Efficient fixation of CO2 into cyclic carbonates catalyzed by hydroxyl-functionalized poly(ionic) Tj ETQq0 0 0 rgB	Г /Qverloc 3.6	k 10 Tf 50 38. 85
29	Effects of cations and anions of ionic liquids on the production of 5-hydroxymethylfurfural from fructose. Chemical Communications, 2012, 48, 4103.	4.1	84
30	Strategies toward improving the performance of organic electrodes in rechargeable lithium (sodium) batteries. Journal of Materials Chemistry A, 2016, 4, 14902-14914.	10.3	84
31	Zirconyl chloride: an efficient recyclable catalyst for synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Tetrahedron, 2009, 65, 6204-6210.	1.9	81
32	Hexaazatriphenylene derivatives/GO composites as organic cathodes for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 2752-2757.	10.3	79
33	Synthesis of dimethyl carbonate catalyzed by carboxylic functionalized imidazolium salt via transesterification reaction. Catalysis Science and Technology, 2012, 2, 600-605.	4.1	78
34	Carboxylation of terminal alkynes at ambient CO2 pressure in ethylene carbonate. Green Chemistry, 2013, 15, 2401.	9.0	78
35	Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. Journal of Molecular Catalysis A, 2005, 241, 233-237.	4.8	77
36	Experimental and theoretical studies on imidazolium ionic liquid-promoted conversion of fructose to 5-hydroxymethylfurfural. Green Chemistry, 2012, 14, 2752.	9.0	77

JIN-QUAN WANG

#	Article	IF	CITATIONS
37	Efficient fixation of CO ₂ into cyclic carbonates catalysed by silicon-based main chain poly-imidazolium salts. Green Chemistry, 2014, 16, 4515-4519.	9.0	75
38	A CO2/H2O2-tunable reaction: direct conversion of styrene into styrene carbonate catalyzed by sodium phosphotungstate/n-Bu4NBr. Green Chemistry, 2008, 10, 1218.	9.0	73
39	lonic Liquids: The Synergistic Catalytic Effect in the Synthesis of Cyclic Carbonates. Catalysts, 2013, 3, 878-901.	3.5	63
40	Biocompatible and recyclable amino acid binary catalyst for efficient chemical fixation of CO2. Catalysis Communications, 2014, 44, 6-9.	3.3	62
41	Iron(iii)-based ionic liquid-catalyzed regioselective benzylation of arenes and heteroarenes. Green Chemistry, 2011, 13, 1182.	9.0	53
42	One-pot synthesis of dimethyl carbonate catalyzed by n-Bu4NBr/n-Bu3N from methanol, epoxides, and supercritical CO2. Applied Catalysis A: General, 2006, 301, 215-221.	4.3	52
43	Polystyrene-bound diethanolamine based ionic liquids for chemical fixation of CO2. Tetrahedron Letters, 2012, 53, 2684-2688.	1.4	52
44	ZnBr ₂ -Based Choline Chloride Ionic Liquid for Efficient Fixation of CO ₂ to Cyclic Carbonate. Synthetic Communications, 2012, 42, 2564-2573.	2.1	50
45	Facile synthesis of N-rich porous azo-linked frameworks for selective CO ₂ capture and conversion. Green Chemistry, 2016, 18, 5248-5253.	9.0	50
46	Synthesis of dimethyl carbonate from CO2 and ethylene oxide catalyzed by K2CO3-based binary salts in the presence of H2O. Green Chemistry, 2011, 13, 3213.	9.0	48
47	A nanoporous sulfur-bridged hexaazatrinaphthylene framework as an organic cathode for lithium ion batteries with well-balanced electrochemical performance. Chemical Communications, 2018, 54, 7681-7684.	4.1	48
48	Triethanolamine/KI: A Multifunctional Catalyst for CO2 Activation and Conversion with Epoxides into Cyclic Carbonates. Synthetic Communications, 2013, 43, 2985-2997.	2.1	36
49	Synthesis of Urea Derivatives from CO2 and Amines Catalyzed by Polyethylene Glycol Supported Potassium Hydroxide without Dehydrating Agents. Synlett, 2010, 2010, 1276-1280.	1.8	25
50	Polyethylene Glycol–Enhanced Chemoselective Synthesis of Organic Carbamates from Amines, CO ₂ , and Alkyl Halides. Synthetic Communications, 2011, 41, 3298-3307.	2.1	25
51	Polyethylene glycol radical-initiated oxidation of benzylic alcohols in compressed carbon dioxide. Green Chemistry, 2009, 11, 1013.	9.0	24
52	Structures and hydrogen bonds of biodegradable naphthenate ionic liquids. Fluid Phase Equilibria, 2013, 360, 169-179.	2.5	24
53	The Freeâ€Radical Chemistry of Polyethylene Glycol: Organic Reactions in Compressed Carbon Dioxide. ChemSusChem, 2009, 2, 755-760.	6.8	21
54	Nitrogenâ€Linked Hexaazatrinaphthylene Polymer as Cathode Material in Lithiumâ€lon Battery. Chemistry - A European Journal, 2020, 26, 2581-2585.	3.3	18

JIN-QUAN WANG

#	Article	IF	CITATIONS
55	Facile synthesis of oxazolidinones catalyzed by n-Bu4NBr3/n-Bu4NBr directly from olefins, chloramine-T and carbon dioxide. Catalysis Communications, 2010, 11, 992-995.	3.3	17
56	Environmentally Benign Chemical Conversion of CO2 into Organic Carbonates Catalyzed by Phosphonium Salts. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 494-498.	1.6	16
57	Polyethylene glycol radical-initiated benzylic C–H bond oxygenation in compressed carbon dioxide. New Journal of Chemistry, 2009, 33, 1637.	2.8	15
58	Hydrogen Bond Donor-promoted Fixation of CO ₂ with Epoxides into Cyclic Carbonates: Moving Forward. Current Green Chemistry, 2015, 2, 3-13.	1.1	14
59	Guanidinium Salt Functionalized PEG: An Effective and Recyclable Homo-geneous Catalyst for the Synthesis of Cyclic Carbonates from CO2 and Epoxides under Solvent-Free Conditions. Synlett, 2007, 2007, 3058-3062.	1.8	13
60	Methodologies for chemical utilization of CO2 to valuable compounds through molecular activation by efficient catalysts. Frontiers of Chemical Engineering in China, 2009, 3, 224-228.	0.6	9
61	An Efficient and Stable Ionic Liquid System for Synthesis of Ethylene Glycol via Hydrolysis of Ethylene Carbonate. Chinese Journal of Chemical Engineering, 2010, 18, 962-966.	3.5	9
62	Biomimetic Oxidation of Alcohols Catalyzed by TEMPO-Functionalized Polyethylene Glycol and Copper(I) Chloride in Compressed Carbon Dioxide. Synlett, 2009, 2009, 3291-3294.	1.8	6