Huiliang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9938363/publications.pdf

Version: 2024-02-01

HULLANG WANG

#	Article	IF	CITATIONS
1	Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications, 2013, 4, 1859.	5.8	1,713
2	Solution-Processed Graphene/MnO ₂ Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Letters, 2011, 11, 2905-2911.	4.5	1,195
3	Enhancing the Supercapacitor Performance of Graphene/MnO ₂ Nanostructured Electrodes by Conductive Wrapping. Nano Letters, 2011, 11, 4438-4442.	4.5	1,062
4	Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9287-9292.	3.3	1,025
5	A skin-inspired organic digital mechanoreceptor. Science, 2015, 350, 313-316.	6.0	708
6	Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nature Biomedical Engineering, 2019, 3, 58-68.	11.6	499
7	Next-generation probes, particles, and proteins for neural interfacing. Science Advances, 2017, 3, e1601649.	4.7	377
8	Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nature Communications, 2011, 2, 541.	5.8	333
9	Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Advanced Materials, 2016, 28, 4441-4448.	11.1	234
10	Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4776-4781.	3.3	179
11	Significant Enhancement of Infrared Photodetector Sensitivity Using a Semiconducting Singleâ€Walled Carbon Nanotube/C ₆₀ Phototransistor. Advanced Materials, 2015, 27, 759-765.	11.1	133
12	Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science, 2020, 367, 1372-1376.	6.0	132
13	Largeâ€Area Assembly of Densely Aligned Singleâ€Walled Carbon Nanotubes Using Solution Shearing and Their Application to Fieldâ€Effect Transistors. Advanced Materials, 2015, 27, 2656-2662.	11.1	123
14	Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26332-26342.	3.3	118
15	Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today, 2015, 10, 737-758.	6.2	111
16	H-Bonded Supramolecular Polymer for the Selective Dispersion and Subsequent Release of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2015, 137, 4328-4331.	6.6	111
17	High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors. ACS Nano, 2014, 8, 2609-2617.	7.3	91
18	Scalable and Selective Dispersion of Semiconducting Arc-Discharged Carbon Nanotubes by Dithiafulvalene/Thiophene Copolymers for Thin Film Transistors. ACS Nano, 2013, 7, 2659-2668.	7.3	88

HUILIANG WANG

#	Article	IF	CITATIONS
19	Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics. Small, 2015, 11, 126-133.	5.2	69
20	Highly Effective Separation of Semiconducting Carbon Nanotubes verified <i>via</i> Short-Channel Devices Fabricated Using Dip-Pen Nanolithography. ACS Nano, 2012, 6, 2487-2496.	7.3	61
21	Controllable fusion of human brain organoids using acoustofluidics. Lab on A Chip, 2021, 21, 688-699.	3.1	55
22	Highly Stable Carbon Nanotube Topâ€Gate Transistors with Tunable Threshold Voltage. Advanced Materials, 2014, 26, 4588-4593.	11.1	53
23	Diketopyrrolopyrrole (DPP)â€Based Donor–Acceptor Polymers for Selective Dispersion of Largeâ€Diameter Semiconducting Carbon Nanotubes. Small, 2015, 11, 2946-2954.	5.2	47
24	Shapeâ€Controlled, Selfâ€Wrapped Carbon Nanotube 3D Electronics. Advanced Science, 2015, 2, 1500103.	5.6	32
25	Nâ€Type Conjugated Polymerâ€Enabled Selective Dispersion of Semiconducting Carbon Nanotubes for Flexible CMOSâ€Like Circuits. Advanced Functional Materials, 2015, 25, 1837-1844.	7.8	32
26	How is flexible electronics advancing neuroscience research?. Biomaterials, 2021, 268, 120559.	5.7	32
27	High-Performance Field Effect Transistors from Solution Processed Carbon Nanotubes. ACS Nano, 2010, 4, 6659-6664.	7.3	29
28	Design of hydrogel-based wearable EEG electrodes for medical applications. Journal of Materials Chemistry B, 2022, 10, 7260-7280.	2.9	25
29	Overcoming barriers in non-viral gene delivery for neurological applications. Nanoscale, 2022, 14, 3698-3719.	2.8	21
30	Solid-phase esterification between poly(vinyl alcohol) and malonic acid and its function in toughening hydrogels. Polymer Chemistry, 2020, 11, 4787-4797.	1.9	20
31	Ultrasound triggered organic mechanoluminescence materials. Advanced Drug Delivery Reviews, 2022, 186, 114343.	6.6	14